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Abstract

There were never more satellites in space than today and their number is steadily
increasing. At the same time, satellites and their infrastructure on the ground pro-
gressively shift into the focus of cybercriminals and other threat actors, as was im-
pressively shown in early 2022. This issue is intensified by a lack of security research
on the onboard software and firmware of space systems, as past research mostly
focused on the security of other components. This is especially true for small Cube-
Sats that are often built with commercial off-the-shelf parts. OPS-SAT provides
an example of such a CubeSat. OPS-SAT is an experimental satellite that is cur-
rently in space. In this thesis, we assess the security of the OPS-SAT onboard
firmware by using fuzzing. Therefore, we implement an emulator for the AVR32
CPU architecture that allows us to rehost the satellite’s firmware on a more power-
ful computer. Next, we will analyze the firmware and define the code segments that
will be evaluated in the assessment. Our work will show that rehosting can be used
to effectively use fuzzing to identify vulnerabilities in satellite firmware. The results
of the fuzzing will show that the OPS-SAT suffers from at least two security vul-
nerabilities that potentially allow attackers to gain control of the satellites onboard
computer.
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1 Introduction

The introduction explains the motivation for this thesis. The motivation points out
why we consider this topic to be an interesting research area. The introduction
also describes the three main contributions of this thesis. In the third section, the
introduction details how the thesis is organized.

1.1 Motivation

There were never more satellites in space than today and their number is steadily
increasing [Nib21]. In 2020 more than 1200 satellites were sent into space [Nib21].
It is expected that the total number of satellites grows up to 8000 in the year 2024
[CMT20]. Many of these satellites are part of a satellite constellation [Kul20]. Con-
stellations consist of multiple satellites that are similar to each other and have the
same purpose, for example, to provide communication via satellite phones [Kul21].
The number of individual satellites per constellation varies. As an illustration, there
are constellations with 20 planned satellites [Kul21]. On the other hand, the Starlink
constellation is planned to consist of more than 4000 satellites, with 1600 already
being in space [Kul21].

One reason for the increasing number of satellite launches is a drastic decrease in
launch costs that happened in the last decade. The cost of satellite lunches was
reduced because commercial companies developed more cost-efficient spacecrafts
[Jon18]. To give an example of this development, we consider the costs for a Space
Shuttle launch and a launch of the newer Falcon 9 plus Dragon. In 2018, the costs for a
Space Shuttle launch were about 1.7 billion dollars, while a launch of the Falcon 9 plus
Dragon only costs about 150 million dollars [Jon18]. Many companies see this situa-
tion as a chance to develop new market concepts. Therefore, the number of companies
that want to build satellite constellations is increasing every year. Since 2015 more
than 100 constellation companies were founded [Kul21]. Combined, these companies
plan to start hundreds of satellites every year [Kul20].

Most of the existing and planned satellite constellations consist of CubeSats [Kul21].
CubeSats are small satellites that usually fly in a Low Earth Orbit (LEO). A LEO
is any orbit with a distance of 350 to 2000 kilometers to Earth’s surface [Kul21].
CubeSats are used for various purposes, like weather observation, communication,
or scientific measurements. Like every spacecraft, CubeSats face various challenges
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in space. These challenges include exposure to solar radiation and a limited power
supply. Additionally, repairs are impossible if a CubeSat is physically damaged
when in space. Because of that, engineers that build CubeSats need to have spe-
cial skills, like physics, electrical engineering, and applied science [NE19]. Also,
software engineering is needed to build a CubeSat. However, experts in spacecraft
development are usually no experts in computer security [Fal18]. CubeSat engineers
often lack awareness about computer security issues [Fal18]. Additionally, computer
security is often not considered important when building a CubeSat, because the
mentioned physical challenges are more pressing issues [Fal18] [Fri13]. Because of
this, there are also financial constraints that affect the security of space-systems
[Fal18].

The development of spacecrafts often requires a complex project-organization, as
various possible participants are involved in such projects [Fal18]. Besides scientific
stakeholders, like universities, there are commercial companies, vendors and contrac-
tors from the private sector, and public space agencies that need to work together
to send a satellite into space. Usually, these participants are from multiple countries
and each participant has it’s own responsibilities during the project [Fal18]. This
is relevant for the security of CubeStats, as complex structures increase the risk of
security issues [Fal18]. The reason for this is that the responsibility for the security
of the satellite is often not clearly assigned to every relevant party [Fal18]. Hence,
there could be a situation where one party is not addressing a potential security issue
in the satellite’s software because they expect another party to do so. However, the
second party also expects another party to focus on the security aspects of the satel-
lite, as this responsibility was not assigned to them. In such cases, vulnerabilities
may stay unnoticed because no party is explicitly responsible for security-related is-
sues [Fal18]. Another aspect is that there is no international authority or regulation
that enforces rules for secure spacecraft development [Fal18]. Therefore, many space-
craft developers only focus the functionality and safety concerns without considering
security.

The increasing number of CubeSats makes them an interesting target for cybercrim-
inals [FVS21]. Recent events showed that satellites and the related infrastructure
in general are catching the attention of cybercriminals and other threat actors. In
early 2022 the KA-SAT satellite network was attacked [Via22]. The attackers used
malware to disable multiple thousand satellite modems on the ground [Via22]. These
systems could no longer be used for communication and the attack resulted in various
side effects. For example, more than 5000 wind power stations in Germany could no
longer be accessed remotely [Bun22].

Attacks on satellites are not a new phenomenon and have been reported in the past
decades [PM20]. These reports include various types of attacks, like attacks on
satellite control systems on the ground and attacks on communication links [Fri13].
As an illustration, there were incidents in which radio signals from Global Posi-
tioning System (GPS)-satellites were jammed to prevent receivers on the ground to
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use GPS [Fri13]. Other reports show that attackers can eavesdrop on communica-
tions links between satellites and ground stations[PM20]. There are also reports
about incidents, in which attackers were able to gain control of satellites in space
[Fri13].

Because of incidents like the ones described above and the general development in
the space industry, it is expected that satellites and the related infrastructure will be
targeted more frequently by groups with malicious intent in the future [Fal18] [PM20].
One of the main reasons for this assumption is, that attacks on satellites allow thread
actors to impact a high number of assets [Fal18]. Besides damages to the satellites
themselves, there can be consequences for various industries [Fal18]. CubeSats in
particular are vulnerable to various attacks [FVS21].

Despite this situation, there is a lack of research on the security of satellite systems
[Fal18]. One reason for this is that the private sector is often not cooperating with re-
searchers who wish to analyze the security of a certain space-system [Fal18]. Because
many CubeSats are build with commercial off-the-shelf parts, including software de-
velopment kits, this leads to a situation where a vulnerability in a single product
can cause security issues in multiple types of CubeSats that were built by different
vendors [Fal18]. Hence, such an incident could affect a whole satellite constellation or
even multiple constellations. A specific issue is that the security of satellite firmware
is not as well researched as other areas.

The situation described above shows that the security of satellite systems is an in-
teresting research area with many aspects. Some of these aspects are areas with
little previous research. One example of such an area is the security of CubeSat
firmware. Because of that, we want to use this thesis to investigate the secu-
rity of CubeSat firmware. More specifically, we want to do a fuzzing-based secu-
rity assessment of the firmware of the OPS-SAT, a CubeSat that currently is in
space.

The OPS-SAT in particular is an interesting research subject because we already
know that it suffers at least from one security vulnerability. Hence, we want to
use fuzzing to evaluate if there are other vulnerabilities that are currently not
known.
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1.2 Contribution

This thesis will provide the following contributions:

• Implementation of an AVR32 emulator

• Fuzzing-based security assessment of the OPS-SAT firmware

• Collection of hurdles and issues, that come up when fuzzing satellite firmware

The primary contribution of this thesis will be a fuzzing-based security assessment
of OPS-SAT’s firmware. We will use the well-known AFL++ fuzzing tool during
the assessment. The assessment will focus on the security of functions that are
involved in the communication with ground stations. However, before we start with
the assessment, we need to overcome an important issue.

The Central Processing Unit (CPU) that is used in the OPS-SAT is based on the
AVR32 architecture. This architecture is intended to be used in embedded devices,
like the OPS-SAT. The particular CPU in the OPS-SAT is not powerful enough
to do meaningful fuzzing. Hence, we will use rehosting to execute the firmware on
a more powerful desktop computer CPU. This way, we can improve the perfor-
mance of the fuzzing process. However, no suitable AVR32 emulator is available
to the public at this time. Therefore, we need to implement an AVR32 emula-
tor. Hence, the second contribution of this thesis will be a basic AVR32 emulator
that later can be used by other researchers that plan to analyze AVR32-based soft-
ware. To implement the emulator, we will extend the QEMU emulation software
[QEMb].

As a third contribution, we will note issues and hurdles that we come across dur-
ing the implementation of the emulator and the fuzzing. For example, we expect
difficulties because the firmware needs to interact with peripheral hardware. As we
want to reduce the complexity of the emulation, we will not emulate the full func-
tionality of peripheral devices. Therefore, we need to find workarounds for such
situations. These issues and their respective solutions likely apply to the firmware
of other satellites and hence might be useful if similar projects are done in the fu-
ture.

1.3 Organization of this Thesis

This thesis has three main parts that are further divided into 9 chapters. The first
part explains the theoretical background of this work. Part two can be considered
as the practical phase, where we implement the AVR32 emulator and started the
fuzzing process. The third and final part consists of the evaluation and discusses the
results of the practical phase. In this section, we will briefly explain the contents of
each chapter.
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As already mentioned, the thesis is divided into 9 chapters. In this first chapter,
we talked about our motivation for the thesis. We also named the three primary
contributions that will be provided by this thesis. In chapter two, we will introduce
the relevant background topics that are necessary to understand certain aspects of
this thesis. This means that we will briefly describe the OPS-SAT, the FreeRTOS
operating system, the AVR32 architecture, and the QEMU project. We will also in-
troduce the relevant aspects of fuzzing. Following that, we will explain our approach
to achieve the research goals in chapter three. More specifically, chapter three ex-
plains our approach to the implementation of the AVR32-emulator and the fuzzing
process.

Chapter 4 marks the start of the practical phase of this thesis. In particular, chapter
4 will explain how the QMEU project can be extended to add a new architecture
to the project. Further, we will show how we implemented the architecture-specific
parts that are necessary to emulate AVR32-based firmware. To this end, we will
describe in deep how the translation of CPU instructions is done and how hardware
devices can be emulated. Thereafter, in chapter 5, we will show how we searched for
functions that can be targeted by fuzzing and how we selected one of these functions
for the assessment. Additionally, we will describe the implementation of a connection
between QEMU and the fuzzing tool. Another aspect that we cover is the creation of
useful input seeds, which are needed by the fuzzing tool.

In the third part of the thesis, we will analyze the results of the fuzzing phase. This
part starts with the evaluation in chapter 6. The evaluation includes an overview of
the coverage that was achieved. Furthermore, we will describe how we improved the
initial coverage for some parts of the firmware. Next, we evaluate the performance
of our fuzzing implementation. We will also address an experiment that was done to
improve the performance if only specific parts of the firmware should be targeted by
fuzzing.

Following that, we describe a vulnerability that was found during the fuzzing phase
and how we built an exploit for it. We will also demonstrate how we used our
AVR32-emulator to verify a second vulnerability that was known before to this thesis.
Additionally, we illustrate how we developed an exploit for this vulnerability and how
we tested it with the emulator.

In chapter 7, we will discuss the results of our work. First, we will start with the
discussion of the security of the OPS-SAT. After that, we will list different hurdles
and issues that we came across during our work. Chapter 7 also includes a short list
of lessons learned. This list contains things that we learned during this thesis and
would like to have known before starting this work as that would have resulted in a
much more efficient approach. Chapter 8 lists other publications and explains how
they are related to this thesis. In chapter 9, we find a conclusion. The conclusion
starts with a summary of this thesis. In the end, we will name future research
questions that came up during this work.





2 Background

The background chapter provides a brief overview about the topics that this thesis
is based on. We first describe the OPS-SAT and introduce important aspects of the
FreeRTOS operating system. Thereafter, we explain the AVR32 CPU architecture
that is used by the on-board computer of OPS-SAT. Next, we cover the QEMU
emulator that we will use to emulate the firmware. In the last section, we will explain
fuzzing, our primary tool for the security assessment.

2.1 The OPS-SAT

The OPS-SAT is an experimental space mission by the European Space Agency
(ESA). The satellite was launched into space in 2019 and is currently flying 515 kilo-
meters above the earth [Eura]. The goal of the OPS-SAT mission is to provide an
experimentation platform that can be used by experimenters to test new concepts for
satellite-based applications in a real-world setting [Eva16].

Regular satellite missions often take years to prepare and are worth millions of euros.
To prevent potential safety issues that could result in the loss of a satellite, software
that controls ESA satellites is strictly tested before being send to an in-flight-system.
While such safety tests are critical for the integrity of a satellite, they are a hurdle
when it comes to experiments and new approaches that need to be tested in real-
world settings. Therefore, software experiments are difficult to prepare and often
will not be carried out because of safety concerns. Additionally, satellites often
lack a powerful processor. Because of that, many processing operations can not be
done effectively on satellites [Eva16]. The OPS-SAT mission has the objective to
provide a solution for these issues. The OPS-SAT provides a new kind of processing
hardware that is said to be ten times more powerful than any other CPU used in
ESA spacecrafts [Eura].

The OPS-SAT consists of two important, divided parts. The first part is the CubeSat
bus, the other part is the Satellite Experimental Processing Platform (SEPP).

The CubeSat bus consists of a NanoMind A3200 board, a power control system,
and a UHF communication system. The CubeSat bus also contains other utility
systems that are needed to operate a satellite, like a GPS receiver. The CubeSat
bus is responsible to monitor the satellite’s state. It sends status information to
the ground station and it can control the execution of experiments on the SEPP.
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The firmware that is used on the NanoMind board will be the focus of this the-
sis.

The NanoMind A3200 is a System-On-Chip (SOC) that is designed for applications
in space [Gom21]. The core of the SOC is a AT32UC3C microcontroller that is
based on the AVR32 architecture. The A3200 also provides multiple subsystems,
like an I2C interface and a Controller Area Network (CAN) bus interface. The
A3200 offers a 32 MB SDRAM and a 120 MB Flash memory as well as a timing
co-processor.

The second part, the payload, of the OPS-SAT is the SEPP. The SEPP is the
main part of the OPS-SAT and contains the processing platform that is used to
execute the experiments. The processing platform is based on an ARM A-9 dual-
core CPU. It also provides various sub-systems and devices that can be used by
experimenters:

• Camera

• Optical receiver for laser communication

• Software defined radio

• Second GPS receiver

• S-Band Transponder

• Fine Attitude Determination Control System

The OPS-SAT mission allows institutions and companies to apply for an experi-
mentation slot [Eurb]. At this time, over 100 institutions applied to perform their
experiments on the OPS-SAT. During an experiment, any system of the SEPP can
be used by the experimenter software and experimenters are allowed to communicate
with their software in real-time. This way, they can control the different sub-systems
of the OPS-SAT [Eva16].

The CubeSat bus, the SEPP, and the various sub-systems are connected by dif-
ferent interfaces. A simplified diagram of structure of OPS-SAT can be seen in
Figure 2.1. On important fact is that the SEPP and the onboard computer are
connected by a CAN line and an I2C line that allow the two systems to exchange
data.
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Figure 2.1: Simplified system structure of the OPS-SAT.
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2.1.1 Additional motivation - Vulnerabilities

The OPS-SAT suffers from at least one security vulnerability. A function that works
on input data that is loaded from an external connection suffers from a buffer over-
flow. Such vulnerabilities can be severe, because they may allow overwriting of
values on the stack. If a code pointer is stored on the stack, it potentially can be
overwritten and an attacker can gain control of the system. We will show that this is
possible for this specific vulnerability by using the emulator that we will implement.
However, identifying such vulnerabilities by static analysis can be a onerous task, as
every function that works on buffers needs to be evaluated. This was an additional
motivation to use fuzzing because fuzzing is a tool that is capable to detect such
vulnerabilities more quickly.

2.2 FreeRTOS

FreeRTOS is a Real Time Operating System (RTOS) that supports the AVR32
architecture [Freb]. It is intended to be used on microcontrollers and is used by the
OPS-SAT.

FreeRTOS uses a scheduling-based approach to perform multitasking on a single-
thread CPU [Frec]. A firmware that is based on FreeRTOS consists of multiple inde-
pendent tasks that are managed by a scheduler [Free]. The scheduler ensures that ev-
ery task receives CPU time, depending the priority of the task.

A task has a context that consists of the CPU register values and the stack of the
task. During it’s execution, the task operates on the stack and the CPU registers,
like a regular application would do. But, if a task used up its CPU time or performs
an operation that is blocking, for example, reading input from a hardware device, it
gets suspended until the blocking time is over and no task with a higher priority is
being executed. This context switch is done by storing the CPU state on the stack
and then loading the CPU state of the next task into the corresponding registers
[Frea].

The context switches can be triggered by different events. As mentioned, a context
switch occurs if a task goes into a blocking or waiting state. However, most con-
text switches are initiated by an external event, mostly by a timer interrupt. If a
timer interrupt occurs, the current task is suspended and a control task becomes
active. Among other things, this task decides which task is the next to become
active, depending on the state and priority of the tasks [Fred]. This way, differ-
ent operations can be executed on a single-thread CPU, like the one in the OPS-
SAT.
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2.2.1 Security Mechanisms

FreeRTOS provides two different techniques to detect a stack overflow. The first
method evaluates if the stack pointer is outside the allowed range of a task, after the
task is suspended. After a task is suspended, the stack likely is at its lowest point
and therefore a stack overflow could be detected [Fref].

The second method is a padding of known bytes that is written into the stack, after
a task is created. If a task is suspended, FreeRTOS checks if the last 16 bytes in the
stack are equal to the known bytes.

Both techniques are optional and only checked when the vApplicationStackOver-
flowHook function is called.

2.3 The AVR32 Architecture

AVR32 is a 32-bit load/store processor architecture that was developed by At-
mel [Atmb]. It is intended to be used by microcontrollers and embedded sys-
tems.

AVR32 stores data in big-endian, hence the most significant bit is stored at the
lowest address in memory. AVR32 can load and store 8 bit long bytes, 16 bit long
half-words, 32 bit long words and 64 bit long double-words. AVR32 supports signed
and unsigned bytes and half-words.

2.3.1 Registers

AVR32 provides 13 general-purpose registers. Additionally, there are registers for
the stack pointer, the link register and the program counter. Besides that, AVR32
has a 32 bit long status register that stores information about the current CPU
state. For example, the status register contains flags that are set if the result of
an arithmetic operation is negative or zero. The status register also contains three
mode bits that indicate the current operation mode of the CPU. For example, the
CPU usually operates in the application mode. However, if an interrupt occurs,
the mode changes and the mode bits are modified, according to the priority of the
interrupt.

2.3.2 Instructions

AVR32 provides over 150 instructions that can be grouped into:

• Arithmetic operations
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• Logic operations

• Bit operations

• Arithmetic and logical shift operations

• Instruction flow operations

• Data transfer and load and store operations.

• System control operations

Additionally, AVR32 supports operations on co-processors and Java code execution.
Because the AR32UC3C processor that is used in the OPSSAT does not support java,
the corresponding instructions are not further addressed in this work.

Instruction Structure

AVR32 instructions are either 16 or 32 bit long. A 32-bit instruction always starts
with a bit sequence of 111. This fact was handy when QEMU needs to decode
instructions, as we explain in section 4.2. In general, an instruction consists of
several fixed bits that indicate what instruction it is. Those bits are called op-
code and they are used by the processor to identify what operation needs to be
performed.

Besides the opcode, an instruction can have one or more operands. An operand
can be an immediate value or the number of a register. AVR32 has the following
operands:

• Register numbers and register lists

• Immediate values

• Conditions and bit flags

• Displacements

• Shit amounts

• Bit positions and widths of bit fields

In some cases, an operator is split into multiple parts that are distributed to different
bit fields within the instruction, for example 21 bit immediate values. In total AVR32
has 58 different instruction formats that are described in the AVR32 architecture
document [Atmb].

It should be noted that many instructions exist in multiple formats. For example,
the subtract instruction can be used with two registers, performing the operation
rd← rs−rd, or with one register and an immediate value, performing the operation
rd ← rd − 0x10, where rd and rs are register and 0x10 is the immediate values
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16. Because of this, an AVR32 compiler can use the compact 16-bit format of
instruction, if the operators are suitable. This way, the size of the compiled binary
can be smaller. If the operators are not suitable, for example, because an immediate
value needs 21 bits, it can still use the less compact 32-bit format. Another advantage
of this concept is that some instructions can perform multiple operations so that a
compiler can spare a whole instruction. For example, if a program segment needs
to perform the operation rd ← rd + (rs << 2), this can be assembled as one shift
instruction and one add instruction. But AVR32 also provides the add instruction
in a format that includes an operand shift. Therefore, the resulting binary is more
compact.

2.4 The QEMU Emulator

The Quick Emulator (QEMU) is an open source software project. QEMU allows
rehosting of software [QEMb]. Rehosting means that software that was compiled
for different architecture than the host processor architecture can be executed. Re-
hosting will be used to emulate the execution of the OPS-SAT firmware. This is
necessary because the processor of the OPS-SAT is not fast enough to support mean-
ingful fuzzing. Because the AVR32 architecture is supposed to be used in embedded
systems, AVR32-based processors in general are likely to be significantly slower than
the CPU of a regular desktop computer. By rehosting the target firmware, these
limitations can be circumvented [MSK+18a].

QEMU will be used as an emulator, because it is a well-known project that provides
lots of features, including full-system-emulation. Because the OPS-SAT firmware
runs a real-time operating system, the emulator needs to emulate a full virtual
CPU with memory access and related operations. Currently, there is no AVR32
support in QEMU. The only publicly available AVR32 implementation is a fork
that was not updated since 2012 [tur]. This fork did not implement actual CPU
instructions that could be emulated. Because we could not find any other sys-
tem emulator with AVR32 support, we will implement basic AVR32 support into
QEMU.

2.4.1 General Concepts

QEMU uses the Tiny Code Generator (TCG) to translate instructions from one ar-
chitecture into another. This is done by parsing an instruction and then generating
host architecture code that performs the operation of the instruction. The TCG is
executed in a loop and reads CPU instructions from the emulated memory. Every
instruction is translated into one or more intermediate code instructions until a full
basic block is translated. A basic block is a segment of instructions that ends after
a branch instruction [QEMe]. The intermediate code is then translated into host
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architecture instructions and executed. QEMU next uses the Program Counter Reg-
ister (PC) to find out at which address the execution should continue. The TCG may
perform code optimizations. For example, an operation that calculates a value that
is just overwritten in the next operation will be ignored.

QEMU also provides memory emulation. A virtual CPU can access an address
in the virtual memory that QEMU then maps to a physical memory location in
the host memory. Besides that, QEMU also supports the emulation of peripheral
hardware, like CAN buses or UART lines that can be accessed by a virtual memory
address.

2.5 Fuzzing

Fuzzing is a technique that is used to find vulnerabilities in applications [SWS+16].
When fuzzing an application, input is automatically generated and send to the appli-
cation. The application either executes in an intended way and ends with a regular
exit code or the input provoked unexpected behaviour and the application ends with
a crash, for example, a segmentation fault. The fuzzer keeps track of the execution
flow of the application and changes the input before the application is executed again.
The fuzzer tries to generate input that results in as much covered code as possible.
This approach is called coverage-based fuzzing. Coverage refers to the code segments
that were executed. The goal of fuzzing is to find an input that results in a crash of
the target application. A crash indicates that a potential vulnerability is present in
the code segment that caused the crash [Oeh05]. Fuzzing is usually done in a fuzzing
loop. The fuzzer will execute the target application and send the generated input to
it. The fuzzer then keeps track of the coverage and crashes, if any occur. After the
application ended its execution, the fuzzer will use the coverage and crash informa-
tion to generate a new input. Next, the application is started again and the new input
is send to it. A fuzzing tool that uses coverage-based fuzzing is the American Fuzzy
Lop (AFL) [pro]. This tool will be used in this thesis.

Fuzzing can be divided into 3 categories: white box fuzzing, gray box fuzzing, and
black box fuzzing [ZDY+19]. Black box fuzzing only needs the executable binary
of an application. The fuzzing tool is not using any output from the application to
improve the next input. On the other hand, white box fuzzing uses advanced binary
analysis techniques like symbolic execution. Gray box fuzzing is a technique that lies
between the to other categories. When doing gray box fuzzing, the fuzzing tool is us-
ing a small amount of information to improve the inputs. In our case, the fuzzing tool
will use the coverage to generate new inputs. Gray box fuzzing is considered to be ef-
fective in real-world applications [ZDY+19]. Because we have no access to the source
code of the OPS-SAT firmware but can gain coverage through the QEMU emulation,
we will use gray box fuzzing for the security assessment.
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In this chapter, we will shortly explain the approaches that we will take to achieve
the three research goals: the implementation of the AVR32 emulator, the security
assessment and the identification of issues. The first section explains how we aim to
implement the AVR32 emulator with QEMU. The second section will highlight how
we plan to do the fuzzing.

3.1 Emulator Implementation

The QEMU project provides different descriptions of the inner workings of the emu-
lator. There are also some articles on implementing new architectures into QEMU.
We will use these resources to implement the functions that are needed by QEMU
to run a virtual CPU. We will then use the AVR32 instruction set manual to imple-
ment all instructions that are part of the OPS-SAT firmware. This will be done in
an iterative approach. We will implement the first few instructions of the firmware
and then execute the emulator. We expect the emulation to stop after a short time,
as the emulator will not be able to execute the first unknown instruction. Then we
can look up that instruction in the manual and implement it. This will be done
until the firmware is executed without finding new instructions and therefore is an
ongoing task.

The iterative approach is taken because this way the complexity can be reduced, as
only relevant instructions will be be implemented. We also will save time because
not every instruction is found in the firmware and therefore not all instructions need
to be implemented. For example, some instructions execute Java code. However, the
CPU in the NanoMind board does not support Java, hence the related instructions
will be left out.

Because we expect a noticeable amount of complications that result from missing
hardware input, we will look for code segments that try to read data from peripheral
devices. If the emulation does not continue properly without the external input,
we will implement a workaround. For example, the instructions in question could
be skipped. If this solution is not enough, we will implement a basic hardware
device as a last resort and try to determine the expected input values by reverse
engineering the relevant code segments. Because the QEMU projects does not pro-
vide a suitable manual on the implementation of virtual devices, we will analyze
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the code of other hardware devices in the QEMU repository and use it as a refer-
ence.

3.2 Fuzzing Approach

We decided to use AFL++ as a fuzzing tool for this thesis. The tool was chosen
because it is under active development, it provides a plugin API, and a QEMU mode
for fuzzing of emulated binaries [FMEH20]. However, currently AFL++ does not
support the QEMU version that our emulator is based on. Therefore, we will analyze
how AFL++ supported QEMU in previous versions and implement the necessary
connection functions into our emulator.

The fuzzing will be done in a loop. This fuzzing loop consists of the following
steps:

1. The fuzzing tool generates input and sends it to a command handler.

2. QEMU will emulate the input handling.

3. QEMU will report coverage information to AFL.

4. QEMU will report an exit code to AFL after the handler function ends or the
firmware crashes.

After the last step, the fuzzing loop starts again with new input data.

For the first step, we will implement a connection between AFL and QEMU that
allows AFL to send input data into the emulated memory if the emulation reaches a
specific code segment. We plan to write the input data into a buffer that is used to
store input data before the data is used by an input handler.

Next, QEMU will emulate the input handler function. To do so, no further im-
plementation is needed, as the emulator will be capable to emulate all necessary
instructions beforehand. However, we need to identify a suitable command han-
dler function for the fuzzing input. To find an adequate target for the fuzzing, we
will reverse engineer the OPS-SAT firmware. We will try to find a function that is
involved in outside communication. Because we have an Executable and Linkable
Format (ELF)-file of the firmware, we can search for function names that imply that
a function is used for outside communication. Functions that are of particular in-
terest are those that are used to start the execution of operations on the satellite
and are executed in a loop. We likely need to further reverse engineer parts of the
firmware that are responsible for the input handling to determine how the inputs
are handled and if the fuzzing input seeds need to be optimized. We will do this by
statically analyzing the firmware image. After the emulator is implemented we also
will be able to dynamically analyze the firmware.
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QEMU will report coverage information to AFL during the emulation of the handler
function. To provide this information, we will implement a patch to QEMU that
calls a reporting function at the beginning of every code block that is executed. To
be able to evaluate the effectiveness of the fuzzing, we will also collect the coverage
information in a log file.

The last step in the fuzzing loop is the reporting of an exit code. We will implement
a patch to QEMU that reports the exit code zero to AFL if the end of the input
handler function is executed. This exit code indicates that no error occurred. We will
also identify error handling functions in the firmware, again by statically analyzing
the firmware image. If one of these functions is called during the input handling, this
may indicate that the input triggered a crash of the firmware. We will implement a
patch to QEMU that reports an error exit code to AFL if one of the error handling
functions is executed and then restarts the emulation.
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This chapter covers the first part of our practical work. In the first three sections, we
describe how we implemented the AVR32 architecture in QEMU and how we build a
virtual NanoMind board. Then we discuss different hardware components that were
emulated in QEMU. In the last section, we explain how we build a testing framework
that was used to validate the AVR32 emulation.

4.1 QEMU code translation

We explained the general concept of QEMU in section 2.4. Now, we will describe how
binary data of one CPU architecture is translated into another and then is executed
by QEMU.

The architecture specific function that translates binary data into QEMU’s inter-
mediate code, is set in the .translate_insn parameter of the TranslatorOps in
the cpu.c file. For our implementation, this is the avr32_translate_insn func-
tion.

The avr32_translate_insn function first sets the emulated program counter register
to the value of the current program address. After that, the decode_insn_load
function is called. This function is included from an external file that is generated
by QEMU’s decodetree.py script during QEMU’s compilation. The decodetree.py
script reads the instruction patterns for the AVR32 architecture, which are described
in section 4.2, and generates corresponding C code that allows QEMU to interpret
binary data as target architecture instructions.

4.2 The Decodetree

AVR32 instructions are always 2 or 4 bytes long. A 4 bytes long instruction is in-
dicated by bit mask of 111 at the start of the instruction. After 2 or 4 bytes of
binary data are loaded, QEMU needs to decode the data, to identify which instruc-
tion needs to be executed. QEMU uses a decodetree that consists of instruction
patterns to identify how a specific sequence of bits should be interpreted [QEMa].
The decode tree is created at QEMU’s build time. The creation is done in the de-
codetree.py script that is part of QEMU. The following parts of this section will
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discuss the decode tree patterns and how they are defined for the AVR32 instruction
set.

4.2.1 Patterns

The QEMU decodetree contains patterns for every instruction QEMU needs to em-
ulate. In the AVR32 implementation, the decode patterns were specified in the
insn.decode file.

A decodetree pattern is a sequence of bit values and wildcards that are characteristic
for an instruction. Depending on the instruction and the architecture, there can be
patterns of different lengths. The AVR32 architecture has instructions with 16 bits
length and instructions with 32 bits length. Therefore, every pattern must be 16 or
32 bits long. A pattern starts with an identifier that is followed by a sequence of bit
values, called opcode, and wildcards. A minus indicates an irrelevant value and the
bit at such a position will be ignored. A dot indicates a dynamic value, for example,
an immediate value that was set when a program was compiled. These values will
be evaluated and used in so called fields. The identifier of the pattern is also the
name of the function that QEMU calls to generate the intermediate code for the
instruction.

As an example, the patterns of the AND instruction that performs a logical and
operation and the pattern of the ADD instruction that performs an arithmetical add
operation are shown below:

AND_rr 000 .... 00110 .... @op_rs_rd
ADD_rd_rs 000 .... 00000 .... @op_rs_rd

Listing 4.1: The patterns of the AND and ADD instruction.

Both patterns start with an identifier on the left side. In the middle, the opcode can
be seen. It should be noted that both patterns do not start with a sequence of 111
bits, as the respective instructions are 16 bits long. A pattern can have none, one, or
multiple fields that will be passed to the TCG. Each field can contain an immediate
value, the number of a register or sub-opcodes. The latter is not used in the AVR32
architecture. For example, the AND and the ADD instruction each contain two fields,
which hold the numbers of registers that are used for the operations. Because these
values are set during the compilation of a program, they are represented by the dot
wildcard.

The final part of a pattern definition is the identifier of a format that helps to avoid
redundant definitions if a specific order of fields is used in multiple instructions.
Because both instructions use two fields with the same length at the same position,
they both use the @op_rs_rd format.
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QEMU will perform pattern matching to find the corresponding decode pattern for
a sequence of bytes in a binary file. After that, the instruction is passed to the
format.

4.2.2 Formats

As mentioned earlier, instruction patterns can have fields that contain values that
are set at compile time. In the AVR32 architecture, most instructions have multiple
fields, for example, to specify the destination and the source registers of an operation
or to specify which condition needs to be evaluated for a conditional operation.
Many instructions have fields of the same length at the same position. Often these
fields also have the same purpose, for example, to specify the destination register.
QEMU provides formats to easily work with the values of such fields and to prevent
redundant code. These formats are a handy tool to work with the 58 different
instruction formats that are part of AVR32.

For example, the AND instruction has two fields: one for the source register and
one for the destination register of the operation. The AND instruction also uses two
fields at the same positions, to specify the source and destination registers of the
operation. To use these fields, QEMU passes their bit sequence to the @op_rs_rd
format that is also defined in the insn.decode file:

@op_rs_rd ... rs:4 ..... rd:4 &rs_rd

Listing 4.2: The definition of the op_rs_rd format.

The format starts with its identifier @op_rs_rd. It is followed by its characteristic
field sequence. As the fixed values of the opcode are not relevant to the format,
they are replaced by the dot wildcard. Deviating from a pattern, the fields are
not replaced by wildcards but by a name and their length in bits. In the example
above, there are two fields: the rs field, short for register scource (rs), with 4
bits length, and the rd field, shot for register destination (rd), with also 4 bits
length.

A field definition can end with the name of an argument set. The argument set
specifies the names of the fields in a format. These names are later used to access
the values of the fields in the translation functions. If no set is given, the field names
will be used as arguments. For the AVR32 implementation, we used argument sets
for every format definition, as they may be useful in future updates of the AVR32
implementation.

&rs_rd rs rd

Listing 4.3: The &rs_rd argument set. The fields will be available as the variables
rs and rd later.
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The argument set starts with the an identifier and then has a name for every field
in the format.

To implement the AVR32 instruction set for QEMU, we took the opcode format for
every instruction that occurred in the OPSSAT firmware from the architecture doc-
ument [Atmb] and noted it in the way described above.

4.3 Intermediate Representation

After QEMU interpreted binary data as an instruction, it calls the corresponding
handler function with the prefix trans_ to translate the operation of the instruction
into an Intermediate Representation (IR), for example trans_ADD_rd_rs.

The handler functions are defined in the translate.c file. The handler functions trans-
late the operation of their corresponding instruction into an IR [QEMe]. For example,
the AVR32 architecture document defines the operation of the ADD instruction like
this:

Rd← Rd+Rs, {d, s} ∈ {0, 1, . . . , 15} (4.1)

Rd is the register for the first argument and the result of the addition. Rs is the
register for the second argument of the addition. Rd and Rs can represent the same
registers, like add r5, r5. In this case, the CPU adds the value of register 5 to
register 5 itself. The specific registers are set by the compiler, when the program
is compiled into a binary file. Additionally, the ADD instruction also modifies the
status register, depending on the result of the operation. For example, the zero flag
(z-flag), which indicates if the result of an operation is zero, is set to 1, if the result
of the addition is 0. If the result of the addition is not zero, the z-flag is set to
0.

When adding a new architecture to QEMU, the behavior of every instruction needs
to be implemented with QEMU’s front-end operators [QEMd]. Front-end operators
are used to generate the code of the IR in the handler functions. Front-end oper-
ators do not modify the contents of the emulated registers or the virtual memory
directly, but generate the IR code that is later used to perform the actual opera-
tions.

The ADD instruction can be translated with front-end operators to IR as follows:

1 static bool trans_ADD_rd_rs(DisasContext *ctx, arg_ADD_rd_rs *a){
2 TCGv res = tcg_temp_new_i32();
3 TCGv Rd = tcg_temp_new_i32();
4 TCGv Rs = tcg_temp_new_i32();
5 tcg_gen_mov_i32(Rd, cpu_r[a->rd]);
6 tcg_gen_mov_i32(Rs, cpu_r[a->rs]);
7

8 tcg_gen_add_i32(res, Rd, Rs);
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9 tcg_gen_add_i32(cpu_r[a->rd], cpu_r[a->rd], cpu_r[a->rs]);
10

11 // Setting the status register
12

13 if(a->rd == PC_REG){
14 ctx->base.is_jmp = DISAS_JUMP;
15 }
16

17 tcg_temp_free_i32(res);
18 tcg_temp_free_i32(Rd);
19 tcg_temp_free_i32(Rs);
20 //...
21

22 ctx->base.pc_next += 2;
23 return true;
24 }

Listing 4.4: The trans_ADD_rd_rs function in translate.c.

In lines 2 to 4 we initiate a 3 temporary variables, which are needed later. Tempo-
rary variables are used to perform operations that should not change the content of
an emulated register. This is necessary, because many instructions perform multi-
ple operations at once. For example, the ADD instruction changes the destination
register and the status register. However, QEMU can not perform this operation si-
multaneously. Therefore, temporary variables are needed to keep certain values until
the instruction is completed. In case of the ADD instruction, the original content of
the destination register and the result of the addition are needed to set the status
register.

In line 5 the value in the destination register is moved into the Rd temporary variable.
In line 6 the same is done for the source register. The cpu_r variable is a global array
that holds the values of all CPU registers. These values are also TCGv variables. A
special aspect of the TCG variables is that their value can not be accessed by the
translation function directly. As mentioned before, QEMU first translates a basic
block to IR and then executes it. Therefore, the values in the TGCv variables are
not known when the translation function is executed.

The variable a holds the content of fields, which can be accessed by the names set
in insn.decode. In this case, a holds the specific number of the registers rs and
rd. As these numbers are decoded form the loaded binary data, they are known
during the execution of the translation function and directly accessible as a C inte-
ger.

In line 9, we call the TCGs gen_add function, with res as the result variable
and Rd and Rs as arguments. In line 10 we do the same, but we use the real
emulated registers as arguments. The temporary variables are necessary, because
the original value in cpu_r[r->rd] is needed to correctly modify the status regis-
ter.

If the destination register is the PC register, the CPU would jump to another location
within the program. Therefore, we check if a->rd is the PC registers in line 13 and
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tell QEMU that the translation needs to continue at another translation block in
line 15, if rd is the PC register.

In line 18 to 20 the temporary variables are deleted. This is important because
QEMU exits with an error after the translation block was executed and temporary
variables are not cleared. At last, the program counter is increased by 2, as the ADD
instruction is 16 bit long. The function returns true, to tell the translation loop that
the instructions was translated successfully.

QEMU calls a translation function for every instruction in a basic block. Be-
fore QEMU can finally execute the IR of the translated block, the IR is trans-
lated to instructions of the host architecture that QEMU is executed on. This
is done by existing QEMU functions that are not specific for the guest architec-
ture.

4.3.1 Branch instructions and conditions

Some instructions perform conditional operations. If the condition depends on a
value from an instruction field, the condition can be simply evaluated by the transla-
tion function. For example, the ANDL operation that performs a logical and opera-
tion on the lower half of a register has a flag that determines if the upper half of the
register should be set to zero. If the flag is set to 1, the upper 16 bits of the register are
cleared. Otherwise, the upper half of the register is not affected by the instruction.
Because the bit in the flag is set during compile time, it is known when QEMU trans-
lates the instruction. Hence, we can utilize a regular if statement from C code, as
the instructions handler will not change during runtime.

However, if the condition depends on the content of a register, a more complex
approach is needed. Because values in registers are not known during the trans-
lation, they need to be evaluated with frontend operators. Because QEMU has
no frontend operators that work like an if-statement, implementers need to use so
called TCGLabels to perform jump operations based on register evaluations. First,
the condition is evaluated. Then, a conditional branch is executed within the in-
struction, depending on the result of the evaluation. The labels then are used to
jump past operations that should not be executed because of the evaluated con-
dition. An example of such instructions is the conditional branch (BR) instruc-
tion:

1 static bool trans_BR_rd(DisasContext *ctx, arg_BR_rd *a){
2 int disp = sign_extend_8(a->disp) << 1;
3

4 TCGLabel *no_branch = gen_new_label();
5 TCGv reg = tcg_temp_new_i32();
6 int val = checkCondition(a->rd, reg);
7

8 tcg_gen_brcondi_i32(TCG_COND_NE, reg, val, no_branch);
9 gen_goto_tb(ctx, 0, ctx->base.pc_next+disp);

10
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11 gen_set_label(no_branch);
12

13 tcg_temp_free_i32(reg);
14 ctx->base.pc_next += 2;
15 ctx->base.is_jmp = DISAS_CHAIN;
16 return true;
17 }

Listing 4.5: The trans_BR_rd function in translate.c.

The BR instruction uses a displacement to calculate the destination address of the
branch. This displacement is calculated in line 2. To do so, the displacement is
first signed extended, as it is defined in the AVR32 instruction set manual. Then
the extended displacement is logically shifted one bit to the left, again as stated
in the instruction set manual. In line 4 a TCGLable is defined. The label will be
used later, to skip parts of the IR. Line 5 is used to declare a temporary vari-
able. In line 6 the checkCondition function is called. The first argument of the
function is the condition that needs to be checked. The condition is given as a
4 bit value in a filed of the instruction. The second argument is the temporary
variable. The checkCondition function then evaluates the passed condition based
on the content of the status register. For example, a condition could be the equal
condition.

The equal condition is true, if the zero flag in the status register is 1. In this case, the
temporary variable is filled with the value of the zero flag from the status register and
the return value of the function is 1, as the zero flag needs to be 1 for the condition
to be true. The actual evaluation is done in line 8. The tcg_gen_brcondi_i32
frontend operator is used to check if the value in the temporary variable is not
equal to the return value of checkCondition. If the evaluation is true, the condition
of the branch instruction is not true and no branch should be done. Therefore,
tcg_gen_brcondi_i32 will jump to the no_branch label that is given as the third
argument. The label is set in line 11. If the result of the evaluation is not true, the
condition of the branch instruction is true and a branch should be performed. In line
10, this branch is done by calling the gen_goto_tb function. The branch target is
given as the third argument, with the current program counter and the displacement.
In line 13 to 16 the instruction epilogue is given.

QEMU creates the intermediate representation sequentially, in the same order as the
frontend operators that are used in the translation function. Because the branch
that the BR instruction should perform if the condition is true is set in line 10, a
jump to the label that is set in line 11 would cause the emulator to skip the branch
operation in line 10. This way, QEMU can evaluate conditions that depend on
register values.

The approach that was explained above has the disadvantage that it increases the
complexity of the translation function, as it is more complex than a simple if-
statement. In the example above, only one condition needs to be evaluated and a
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single label is enough to reproduce the operation of the branch instruction. However,
there are AVR32 instructions that perform multiple evaluations. For example, the
POPM instruction, which loads multiple registers from the stack, contains multiple
nested if-statements. The implementation of the corresponding translation func-
tion was a complex task and the risk for implementation errors was higher than for
other instructions. We explain how such instructions can be tested for validity in
section 4.6.

4.4 Virtual Hardware

Besides the virtual AVR32 CPU, which executes the instructions, QEMU also needs
a virtual hardware machine that is used to operate the virtual CPU. When starting
QEMU, the user needs to specify which virtual machine should be used to emulate
an application. Hence, we implemented a virtual NanoMind A3200 board in the
hw/avr32 folder. This folder contains all files that define virtual hardware devices
that make use of the AVR32 architecture. The virtual NanoMind creates another
virtual device, to emulate the AT32UC3C microcontroller, during its initialization.
The virtual AT32UC3C is the key component of the hardware emulation. It holds the
definitions of the memory areas that the firmware uses. These are the Static random-
access memory (SRAM), the Flash memory, and the Synchronous Dynamic Random
Access Memory (SDRAM). The memory areas have the same address spaces as a
physical AT32UC3C would have.

The AT32UC3C class also controls the virtual sysbus. The virtual sysbus is used to
connect different virtual hardware devices. One example is the virtual Universal
Asynchronous Receiver Transmitter (UART) device that we implemented. The
firmware uses a UART interface to print log information. By reverse engineering
the relevant parts of the firmware, we found the memory address mapping for the
text output. The virtual UART device was then used to print any text output
to a log file. This information was useful to further understand the firmware’s
behavior, especially because some error messages are printed to the UART de-
vice.

Another important hardware component is the Interrupt Controller, which is ex-
plained in section 4.5. We also implemented different other hardware components,
like a Serial Peripheral Interface (SPI) interface or a CAN bus. Most of these devices
were only implemented in a rudimentary way to allow the firmware to pass certain
checks or to observe the communication to the respective device. For example, we
implemented a virtual FM33256b Ferroelectric Random Access Memory (FRAM)
device. At one point, the firmware tries to read a value from this device to de-
termine if the antennas of the satellite were automatically deployed. Without this
information, the firmware did not continue its execution and therefore we decided
to implement the virtual FM33256b. To do so, we added a memory mapping in
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the virtual AT32UC3C device. The firmware tries to read or write values to certain
memory addresses, when it wants to communicate with peripheral hardware. QEMU
will redirect the communication to the virtual device that was registered for this ad-
dress space. With the virtual device, we can observe the input that the firmware
sends and respond with output of our choice. In case of the virtual FM33256b, we
respond with the value 1, if the firmware tries to read data from the address that
holds the antenna status value.

In case of most of the other virtual devices, like the SPI and CAN interface, we
implemented status return functions and otherwise only observed the input form
the firmware. Because we did not have access to images of the memory devices, we
were not able to respond with meaningful data and decided to not implement more
emulation functionality. However, this can be used as a base for further improvements
of the emulator in the future.

4.5 Timer Interrupts

During initialization of the OPS-SAT firmware, multiple tasks for the FreeRTOS
operating system are created. Among others, the firmware creates the prvIdleTask
at the end of the main function. The Idle Task has the lowest priority of all tasks. It
checks if any other task is ready via supervisor calls and calls the sleep instruction,
if no task is ready. This results in a halt of the CPU. The CPU continues execution
if an interrupt occurs.

The other tasks that are created during the firmware initialization all contain oper-
ations that need to wait for a defined time. For example, the init_task calls the
init_adcs() function that calls other functions until it reaches a call to vTaskDelay.
The vTaskDelayfunction sets a task to inactive until a certain amount of clock cycles
has passed. Because no external clock was emulated, tasks like this were never reac-
tivated. After the prvIdleTask called the sleep instruction, the emulation stopped
and the firmware was not further executed by QEMU. Therefore we needed to im-
plement a clock device that periodically causes interrupts to wake up the CPU and
increase the tick counter. This way, the emulator is able to perform timed opera-
tions.

As mentioned earlier, virtual hardware devices need a reference to the virtual sysbus
device. This is also true for the timer, as it needs to interact with the virtual CPU.
The timer also has a virtual interrupt request line. The interrupt request line is
connected to the virtual CPU and is used to trigger an interrupt that stops the
current operation of the CPU and starts the execution of a special code segment
that handles the interrupt.

The main function of the timer device is a separate thread that is created during
the timer initialization when QEMU is started. The timer thread waits until it is
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activated by a pthread signal. This is done because the firmware first needs to set
up the interrupt handler functions during its initialization phase. After that, the
timer thread executes a while loop every 100 microseconds. Each time the loop is
executed, the timer creates an interrupt on the virtual interrupt request line. The
speed of the emulation depends on the sleep-value of the timer thread. We noticed
that the emulation is running faster for lower values, but slows down for very low
values. A value of 100 microseconds was determined to be fast-working. It was used
during the fuzzing process.

To start the timer, we inject a patch into the MCALL instruction that calls a QEMU
helper function at 0xd00c43f6. At this address, the interrupt handlers are just
prepared and the firmware can handle interrupts. The helper function sends a pthread
signal to the timer thread that then becomes active.

1 d00c43ea 49 7c LDDPC R12=>vTick,->vTick
2 d00c43ec f0 1f 00 17 MCALL PC[->INTC_register_interrupt]
3 ...
4 d00c43f6 f0 1f 00 16 MCALL PC[->tc_init_waveform]

Listing 4.6: The code segment before address 0xd00c43f6.

Listing 4.6 shows the code segment before address 0xd00c43f6. In line 1, the
firmware loads the address of the vTick function into register 12. In line 2 the
INTC_register_interrupt function is called. This function is used to register a
function as an interrupt handler in the interrupt handler table. After the function
call returns, vTick can be used for interrupt handling. In line 4 MCALL is used at
address 0xd00c43f6. When this address is executed, the QEMU helper starts the
timer. We decided to apply the patch to MCALL at this address because the MCALL
instruction already contained patches that were needed to emulate the firmware. This
way no other translation function needed to be modified.

4.5.1 Consuming interrupts

As mentioned in the previous subsection, the timer is connected to the virtual CPU
by an interrupt request line. If an interrupt is send through the interrupt request
line, the virtual interrupt controller that we implemented is used to further handle
the interrupt. During the initialization of the AT32UC3C device, a function was
set as an interrupt handler. If an interrupt is send to the AT32UC3 device, the
interrupt handler function is responsible to set the CPU state accordingly. Specif-
ically, the interrupt controller needs to set the interrupt level and the autovector
[Atma].

The interrupt handler function first checks if an interrupt mask is set in the status
register. If this is the case, the interrupt handling is disabled by the CPU and any
interrupt is to be ignored. For example, the interrupt masks are set if the CPU
already is handling an interrupt of the same level.
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Next, the function determines which interrupt request line caused the interrupt.
The timer device is connected via line 10. The interrupt controller has multiple
status registers that hold information about the interrupt level and the interrupt
cause, the interrupt cause registers. The _get_interrupt_handler function of the
firmware reads out these registers and uses their values to calculate the address
of the appropriate interrupt handler. The addresses of the interrupt handlers are
stored in tables that are filled during the initialization of the firmware. Because of
this, we performed the calculations of _get_interrupt_handler in reverse, to get
a set of values that result in a call to the vTick function at address 0xd00c4478.
The real values for the interrupt cause registers may be different in the real OPS-
SAT.

The last step is a call to QEMUs cpu_interrupt function that invokes a call to
the avr32_cpu_exec_interrupt function that we implemented. This function again
checks the interrupt masks and initiates a call to the avr32_cpu_do_interrupt func-
tion.
//Store regsiters r8 to r12 on the stack.
*(--SP SYS ) = LR;
*(--SP SYS ) = PC of first noncompleted instruction;
*(--SP SYS ) = SR;
SR[M2:M0] = 010;
PC = EVBA + INTERRUPT_VECTOR_OFFSET;

Listing 4.7: Extract of the INT0 exception pseudocode according to AVR32
instruction set manual page 73.

The avr32_cpu_do_interrupt function saves the registers r8 to r12, Link Register
(LR), and PC to the stack and sets the interrupt masks, as defined in the AVR32UC
manual. The function also sets the PC register to the address of the firmware’s
exception handler. The exception handler will call the _get_interrupt_handler
function and then continue at the vTick function.

Inside the vTick function, the firmwares TickCounter will be increased by one. After
that, the firmware continues with the highest priority task that is in the ready state
or, if no other task is ready, with the previous task. To do so, the firmware uses the
RETE instruction that returns from an event handler.

4.5.2 The RETE instruction

The implementation of the RETE instruction was an onerous task because the
firmware fell to undefined behavior, if RETE was implemented as shown in the
AVR32 manual. When an interrupt occurs, the CPU stores the status register on
the stack, as explained above and shown in Listing 4.7. During the normal execution,
the mode bits in the status register have the sequence 000. This indicates that the
CPU is in the application mode. If an interrupt with the priority 0 occurs, the mode
sequence in the status register is changed to 010, after the status register is saved
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to the stack. The first operation of the RETE instruction is to restore the status
register from the stack, as shown in Listing 4.8. After that, the instruction checks if
the current mode is 010, 011, 100, or 101. If this is the case, the registers that were
saved to the stack are to be restored. Otherwise, the registers keep their current
values and the stack pointer is not changed.
SR = *(SP SYS ++)
PC = *(SP SYS ++)
If ( SR[M2:M0] == {010, 011, 100, 101}){
LR = *(SP SYS ++)
//Restore R12 to R8

}

Listing 4.8: Extract of the RETE operation pseudo code according to AVR32
instruction set manual page 306.

If the instruction is implemented as shown in Listing 4.8, the emulation crashed.
This is, because the mode check is performed against the status register value that
was stored on the stack before the exception mode was set. If the interrupt occurs
in the application mode, the check will never pass, because the RETE instruction
already restored the 000 mode sequence. Hence, the firmware continues to add values
to the stack during each interrupt that are never removed from the stack. After some
time, the increasing stack size in the tasks context will provoke that other values are
overwritten. In some cases, the FreeRTOS stack overflow protection noticed this
situation and triggered a CPU rest.

Even after a significant time of studying the AVR32 instruction set manual, no reason
for the above contradiction could be identified. We conclude that the description
of the operation of RETE is liable to be misunderstood and that the mode check
intended be performed against the status register values at the beginning of the
RETE instruction. After we changed the implementation of the instruction so that
the status register value is first checked and then restored, the firmware was executed
as expected. The stack was properly cleared after every interrupt and no values were
overwritten without intend.
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4.6 Testing Framework

During the implementation of the AVR32 architecture in QEMU, implementation
errors occurred frequently. One reason for that is that there are no automated checks
for application logic errors. Assume we want to perform an operation rd← rx+ ry
and implemented the following code:

1 //Correct
2 tcg_gen_add_i32(cpu_r[a->rd], cpu_r[a->rx], cpu_r[a->ry]);
3

4 //Wrong
5 tcg_gen_add_i32(cpu_r[a->rd], cpu_r[a->rx], cpu_r[a->rx]);

Listing 4.9: A little logic error that is not automaticly detected.

In the example above, the operation is done by using the add_i32 front-end operator
that performs an addition on two 32-bit TCGv variables. The operator is called
correctly in line 2. The second argument of the add function is the ry register. On
the other hand, in line 5 the rx register was passed as first and second argument to
the operator. As the code has a correct syntax and the rx register is a valid input,
neither the compiler nor QEMU itself complain about this issue. A mistake like this
can occur because a wrong key was pressed, x instead of y, or the code was copied
from a similar function and not edited correctly.

As this error is purely in the application logic of the emulator, the error will stay
unnoticed until the emulated program behaves in a way that is not expected. As this
might be very deep into the emulation, the source of the error is not easy to determine.
While errors like this are also possible when developing ’regular’ applications, such
errors are more likely to occur when implementing a QEMU extension. This is
because the use of the intermediate representation adds another level of abstraction
to the application. Also, the debugging process for QEMU is more difficult, as
the emulated values are not directly accessible when QEMU is debugged. Because
the debugging takes place when the translation function is executed, the values in
the virtual registers are not known. Multiply days of try and error were spent to
identify faulty parts of the implementation that were caused by minor errors like
this.

To identify errors like the above, we developed a semi-automatic testing frame-
work. The framework consists of various test files that verify AVR32 instructions.
The test files also state the correct register contents of the virtual CPU after the
test is done. The tests are then compiled and executed by a series of python3
scripts.
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4.6.1 Test generation

Each test case is defined and stored in an individual python file. The test cases
consist of two parts: AVR32 assembler code, with the instructions that should be
executed by the emulator and the expected register contents after the test cases
finished their execution. Usually, the test cases need to set up one or more registers,
before the instruction of interest can be used. Therefore, the test case uses multiple
other instructions that may interfere with the status register. When implementing
new tests, this needs to be considered, to ensure that the test result actually shows
the result of the intended instruction and is not affected by the test preparation
code.

The assembler code is stored in a string in the test file. A python dictionary is used
to define the expected results of the test. For each relevant register, the expected
value is given in the dictionary. Registers without defined result values are ignored
for the test’s evaluation. The expected results can also include the flags from the
status register.

Below an example for a test of the AND instruction is given. We expect that the AND
instruction performs the following operation: r5← r5 ∧ r4.

1 TEST = """
2 mov r4, 0x1020
3 mov r5, 0x1020
4 and r5, r4
5 """
6

7 EXPECTED_RESULTS = {
8 "r0": 0,
9 "r4": 0x00001020,

10 "r5": 0x00001020,
11 "sregZ": 0
12 }

Listing 4.10: A test for the AND instruction (test AND_f1_2).

In lines one to four, the code of the test is written down. The test first moves the
value 0x1020 into the r4 register and then moves the same value into the r5 register.
Next, the AND instruction is used in line 4. Because r4 and r5 contain the same
value, it is expected that r5, as the destination of the operation, still contains this
value after the test. Furthermore, the zero-flag of the status register should hold the
value 0, as the result of the operation is not 0, but 0x1020. The expected results
are given in line 7 to 11. Because r0 is not filled with any value in the test, it
should contain the value 0 after the test. Theoretically, it is not necessary to include
this register, however, we did so, to show that the r0 register is not changed by the
involved instructions.

The tests are generated with a python3 script. The script first generates a file that
only contains assembler code that is needed for the test. To do so, the script first
writes a preamble to the assembler file. The preamble contains the section header
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and other information that is needed to assemble the binary file for the test. Also, a
postamble is added to the test. The postamble consists of an unconditional branch
that forces QEMU to output the CPU status after the test code was emulated. This
output is later used to evaluate the test results.

The preamble, the assembler code, and the postamble are combined by the script
and stored in a separate file. The script then calls an AVR32 assembler that builds
an executable ELF file out of the source file. Thereafter, a second script is called
that reads the ELF files section table and extracts the .text section from the file.
The .text section is then written to another file. This step is necessary, because our
QEMU implementation can not load ELF files for now and hence needs raw binary
input.

Finally, QEMU is stated with the extracted binary file as input. The script reads
the QEMU output that contains the register contents and compares them to the
expected results that are loaded from the test case file. At last, the script prints out
if the test was successful or not.

The described process was automated with a wrapper script that performs all neces-
sary steps. The wrapper scripts allows the user to name a single test case that should
be executed or to execute all tests at once. We will evaluate the testing framework
in section 6.5.
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In this chapter, we describe how we used fuzzing to find security vulnerabilities in
the OPS-SAT firmware. First, we discuss what parts of the firmware are a po-
tential target for fuzzing. Thereafter, we explain how we integrated the fuzzing
into the QEMU emulation. In the last section, we cover how we could improve the
fuzzing input seeds, so that relevant code segments would be executed in a reasonable
time.

5.1 Fuzzing Target

As the goal of the security assessment is to execute arbitrary code on the OPS-SAT,
we decided to focus the fuzzing on functions that are involved in the communication
with ground stations. The security of satellite communication links is a better-
researched area of space security, hence we will take up this research and continue it
on the satellite itself [PM20].

To identify functions that read input data from an external source, we performed a
static analysis of the firmware’s ELF-file. The ELF-file contains symbols for the func-
tions and objects, so that we can search for function names that imply an association
with input handling. For example, a function name that includes the substring _rx
suggests that the function is responsible to receive data.

By searching for different words, we found multiple functions that are candidates for
the fuzzing.

The first function that comes into question is the CSP_ServerCycle. It reads a space
packet from an input connection [fSDS20]. However, there is no direct interaction
with the contents of the packet, as it is redirected to another location in the end. Be-
cause of this, we decided to not focus on this function if other functions can be found
that perform operations on the received input data.

Another function that reads input data is can_rx_task_gmv. This function reads
packets from the CAN bus and writes them into different buffers. The OPS-SAT
receives space packets via the CAN bus, therefore this function could be of interest.
However, the function is rather complex and we did not implement a virtual CAN
device that is capable of providing the needed input. Hence, we will not include this
function in the fuzzing process.
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There is also the csp_i2c_rx function that is used to read a space packet from the
I2C bus. We did not include this function in the fuzzing, because it is used by the
i2c_ISR function. This function is an interrupt handler, therefore we would need to
implement another virtual device that generates interrupts. For example, we could
start a new thread that generates an interrupt every n milliseconds and then sends
the fuzzing input through the virtual I2C interface. However, this approach would
increase the complexity of the fuzzing loop and hence was dismissed for the practical
phase.

We decided to use fuzzing against a function that directly works on the input
data, without any hardware interaction. Such a function is the TCTA_Cycle. The
TCTA_Cycle reads a space packet from an input buffer and constructs a telecommand
from it. The telecommand is then executed by a telecommand handler. Depend-
ing on the performed operation, a response packet is send. The TCTA_Cycle is a
cyclic task that is executed until the firmware is restarted. Because the input data
is read from a buffer, no additional virtual hardware needs to be implemented for
the fuzzing.

In the following parts of this section, we will describe the structure of a telecommand
and how the OPS-SAT reads and executes telecommands.

5.1.1 Telecommand structure

The basis of any telecommand is a space packet [fSDS20]. The space packet can be
loaded from the data structure sppBuffer or the CAN bus.

A space packet starts with a 6 bytes long primary header. The header contains var-
ious metadata about the packet. By reverse engineering the TCTA_Cycle functions,
we determined that the OPS-SAT firmware expects certain values to be set in the
upper two bytes of the header.

Table 5.1: Telecommand primary header, upper two bytes

Header values expected by the firmware.

Offset Size Expected Content Description
0xd 3 bit 0 Packet Version Number
0xc 1 bit 1 Packet Type
0xb 1 bit 1 Secondary Header Flag
0x0 10 bit 1010 Application Process ID

The Packet Version number is expected to be zero. The Packet Type bit determines
if a space packet is a telemetry packet or a telecommand packet. A telecommand
packet is identified by a 1 bit in the Packet Type flag. The Secondary Header Flag
determines if the packet has a second header that can be filled with implementer
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defined data. The OPS-SAT expects space packets to contain a secondary header,
therefore the flag must be set to 1. The Application Process ID is used to identify
which application a space packet needs to be routed to. A telecommand space packet
needs to have the value 0xa. Overall, the first two bytes of every telecommand space
packet need to have the value 0x180a.

Following these two bytes, a space packet’s primary header contains a Packet Se-
quence Control Field. This field is not evaluated in the TCTA_Cycle and therefore
was not in focus during our work. The last two bytes of the primary header contain
the size of the user data field. At different locations in the TCTA_Cycle, the firmware
checks if the user data field is not longer than 0xff bytes.

The secondary header of a telecommand space packet is 0x34 bytes long. The first
few bytes of this header are used to determine the telecommands service area and
operation. This information is 7 bytes long and evaluated by multiple functions. At
offset 0x30 in the telecommand, there is a priority byte that needs to have the value
0xc0.

After the secondary header ends, the user data field starts. A regular user data field
can be up to 0xff bytes long. One important value in this field can be found at offset
0x144. At this location, a half-word contains the size of the user data field that is set
after the space packet was converted into a telecommand.

Table 5.2: Structure of a telecommand
Offset Size Description
0x8 4 bytes Status value
0xc 4 bytes Status value
0x10 6 bytes Space Packet primary header
0x18 - Start of Space Packet secondary header
0x1a 2 bytes Service area
0x1c 2 bytes Service
0x1e 2 bytes Operation
0x20 2 bytes Area version (only upper byte used)
0x30 1 byte Packet priority
0x34 4 Timestamp
0x44 - Start of user data

Every telecommand has an additional status header that is located before the pri-
mary header of the space packet. This header is 0x10 bytes long and contains two
important integers. At offset 0xc is a status number that determines if the telecom-
mand was just received, passed a check as valid, or is currently executed. At offset
0x8 is another status value, however, it is only checked at two locations. The status
value at offset 0xc is updated after every execution step.
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A telecommand is stored in the gTelecommandsInProcess array that is 1000 bytes
long. Because every telecommand is 0x14c bytes long in total, the array can hold up
to 20 telecommands.

5.1.2 TCTA_Cycle program flow

The TCTA_Cycle consists of 4 functions:

• TCMA_CleanTCBuffers

• TCMA_ReadCommand

• TCMA_VerifyCommand

• TCMA_ExecuteCommand

In the following subsections, we will explain the relevant parts of these functions. Be-
cause we simplified some aspects of the command handling during the fuzzing, we will
focus on the function parts that are relevant to understand later parts of this thesis. A
graphical overview of the TCTA_Cycle is shown in Figure 5.1.

The first function is responsible for the cleanup of a telecommand’s memory area. Be-
fore a new telecommand is loaded from an input buffer, this function sets every byte in
the telecommand’s status header and the user data area to zero.

5.1.3 Reading a Telecommand

The second function in the cycle, TCMA_ReadCommand, is used to read a space packet
from an input buffer and copy it into the telecommand array. To do so, the COMTT_
GetReceivedTCPacket function is called. The first argument of this function call is
a pointer to the gRawPacketBuffer, where the space packet will be copied to. The
second argument of this function call is the value 0xff. It is used as a maximum
size value.

COMTT_GetReceivedTCPacket first tires to load a space packet from the space packet
protocol buffer (sppBuffer) and then writes it into the gRawPacketBuffer by calling
the function CSP_GetReceivedPacket. If sppBuffer contains a bigger size value than
0xff, the packet is not copied to the telecommand array.

If no space packed was copied from sppBuffer, COMTT_Get ReceivedTCPacket tries
other options to load a space packet. One of these options is a call to the function
CAN_GetLastFrame. This function loads a space packet from the CanStore to the
memory area that is passed as a call argument. It should be noted that the size of
the space packet in the CanStore is not checked against the value 0xff. In theory,
CAN_GetLastFrame will copy packets to the gRawPacketBuffer that are longer than
0xff bytes.
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Figure 5.1: Simplified overview of the execution and data flow in the TCTA_Cycle
The red lines represent function calls, the green lines represent the data flow. Return

values or function arguments are not shown. The blue boxes represent functions, the green
boxes represent data buffers. Some aspects of the TCTA_Cycle are left out, to simplify the

illustration.
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If COMTT_GetReceivedTCPacket returns and a packet was copied, a Cyclic Redun-
dancy Check (CRC) of the space packet is calculated and compared to the last two
bytes of the copied packet. If the values are matching, the function SPP_ReadSpace
Packet is used to copy the space packet from the gRawPacketBuffer to the telecom-
mand array. The last 2 bytes, the CRC check value, are left out. After the user data
is written to the telecommand, the size of the user data area is stored at offset 0x144
in the telecommand.

5.1.4 Telecommand verification

The TCMA_VerifyCommand function is used to determine if a telecommand is valid.
The contents of the telecommand are checked in the TCVE_GenericVerification
function. The first operation is to check if the telecommands primary header starts
with the value 0x180a and if the application process identifier is 0xa. It is also
checked if the value at offset 0x30 is equal to 0xc. If these checks are passed, the
values for the service area and the service, as well as the operation and service
area version from the secondary header, are passed to the function MOSManager_
IsServiceOperationSupported. If this function returns the correct result value,
the telecommand contains a requests for a valid operation and TCMA_VerifyCommand
returns.

5.1.5 Telecommand execution

The last function in the TCTA_Cycle is TCMA_ExecuteCommand. If the status inte-
ger of a telecommand equals 4, the space packet from in telecommand is passed
to the function MALSPP_ConvertSPP2MAL. Inside this function, several values from
the telecommand are copied to a Mission Operations Message Abstraction Layer
message object at a fixed memory location [fSDS15]. The user data field of the
space packet is copied to the message body field. If these operations are success-
ful, the message is passed to the MOSManager_RedirectMessage function. Here,
the service area and the operation in the message are evaluated and the message
is send to the respective telecommand handler. There are 61 telecommand han-
dlers that are grouped into multiple service areas. Some of the handlers are pro-
tected and will operate if the MOS_Globals_isCriticalCommandEnabled flag is set
to 1.

Most of the telecommand handlers will build another message object that is con-
verted into a space packet and send back with the results of the operation. After
MOSManager_RedirectMessage returns and if no other telecommand is ready for exe-
cution, TCMA_ExecuteCommand returns and the TCTA_Caycle starts again.
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5.2 QEMU Fuzzing Integration

We decided to use AFL++ as a fuzzing tool for this thesis. The version of the QEMU
build that we used for this thesis is 6.0.93. Currently, there is no support for this
version in AFL++ or classic AFL. Therefore, we needed to implement a connection
to AFL into QEMU. The avr32a_cpu_class_init function was patched to perform
a call to a setup-function that sets up the fuzzing integration after the virtual CPU
is initialized. The setup-function prepares a shared memory area, where coverage
information is written to later. The function also informs AFL that the fuzzing
target is ready.

We decided to inject the fuzzing test cases directly into the telecommand array, to
reduce the complexity of the emulation and avoid the emulation of peripheral commu-
nication devices. The test cases were injected just before the TCMA_VerifyCommand
function is called. By including the TCMA_Verify Command function in the fuzzing
loop, only test cases that passed the formal validity tests were executed. This is a
trade-off between low complexity and realistic inputs.

To inject the fuzzing input, we added a patch to the MCALL instruction. MCALL
is used to perform a function call. If MCALL is executed at address 0xd00a0652, a
QEMU-helper function is used to read a new test case from AFL. This test case is
then written into the start of the telecommand array at address 0xd0ec2f10.

1 if(ctx->base.next_pc == 0x0xd00a0652){
2 gen_helper_fuzzer_insert(cpu_env);
3 }

Listing 5.1: The patch that is applied to the MCALL instruction.

The patch first checks if the current program counter is equal to 0xd00a0652. If that
is the case, the helper function is called.

We also implemented a patch that changes the value of the MOS_Globals_isCritical
CommandEnabled flag to 1 for every testcase, to ensure that protected telecommands
are also executed. Otherwise, it is unlikely that the AFL produces one input that
enables critical commands and then another input that executes a critical command,
before a reset of the emulation occurs.

AFL needs to be informed when the execution of the fuzzing target ended in a regular
manner, without a crash. The regular end of an application is usually indicated by
the exit code 0. Because our emulator does a full system emulation, the firmware has
no regular ’exit point’, where it stops with an exit code like a regular program would
do. We decided to treat the end of the TCTA_Cycle as the execution end for this
purpose. We added a patch to the POPM instruction at address 0xd00a065a, where
the TCTA_Cycle ends. The patch notifies AFL that the execution ended without an
error. We expect that a crash would prevent the firmware from reaching the end of
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the TCTA_Cycle. As the TCTA_Cycle task is executed periodically, the execution will
continue at the start of the TCTA_Cycle later.

To ensure that unnoticed errors, which were caused by the fuzzing, are not persistent,
we added a call to QEMU’s cpu_reset function after every 10,000 executions. The
call causes QEMU to restart the firmware. Because the firmware setup needs about
2 seconds to start the TCTA_Cycle, the reset was not done after every execution, to
improve the performance. Also, it is likely that a test case will cause an application
logic error that is not immediately resulting in a crash and only becomes active after
some time. Errors like this would not be noticed, if the emulation was resetting after
every execution. Another aspect is that the defined ’execution end’ might be too
early for some errors to come into effect.

Because of the full system emulation, the firmware will not end with an error exit
code if a crash occurs. The QEMU emulator will only exit with an error if an illegal
instruction was found. Therefore, we needed to implement another QEMU-helper
that was added to the RJMP instruction that performs a relative jump. The helper
is executed if the RJMP instruction is used at any of the addresses listed in Table 5.3.
The functions in Table 5.3 are only executed if the firmware notices that an error
occurred. The QEMU-helper then reports a segmentation fault to AFL that will be
recorded as a crash.

Table 5.3: Crash handling functions.
Function Address of crash helper injection
cpu_reset 0xd00c307e
vApplicationStackOverflowHook 0xd00c460e
exit 0xd00c4682
do_unknown_exception 0xd00c42ca

If one of the above addresses is reached, this may indicate that the firmware left its
regular execution path because an error occurred. During a normal execution, with-
out any fuzzing input, non of these functions are called.

5.2.1 Coverage Tracing

AFL needs information about the program’s execution path to conclude how an
input changed the program’s behavior. We added a patch to the avr32_tr_tb_start
function that is called at the beginning of every QEMU translation block. The patch
calls a QEMU-helper that writes the current program counter address to AFL’s
shared memory map. To reduce the amount of information that is send to AFL,
the helper function only writes data into the memory map during the execution
of the TCTA_Cycle. The reporting function can also be used to output detailed
information about the program flow, for example, the arguments of a function call
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can be written to a file. In a future update, the insertion of the fuzzing test cases
could also be implemented in this function. This way, the translate.c file doesn’t
need to be changed if the fuzzing target is changed. With this technique, the code
complexity is reduced, as the fuzzing functionality is fully capsuled in a separate
file.

Another requirement for coverage tracing is to be able to evaluate the covered code
blocks later. The first approach to do this was to simply write every code edge,
which means the previous program counter address and the current program counter
address, to a file. This approach was used for debugging during the implementation of
the AVR32 emulation. However, this came with a tremendous performance impact,
as the emulation creates thousands of edges per second. In general, input- and
output-operations are relatively time-consuming. The resulting logfile also gained
multiple gigabytes in size within minutes.

To circumvent that issue, we created a hash table. For every edge that is reported,
it is first checked if the source address is already stored in the hash table. If that is
not the case, the source address is added to the table and associated with an array.
The array holds the destination addresses that are reached from the source address.
The destination of the edge was then added to the array. This way, it can be quickly
evaluated whether an edge was already reported or not. This structure also allows
one basic block to have multiple destination addresses. For example, the ICALL
instruction jumps to the address that is provided by a register. A code segment
that dynamically calls the start address of tasks could have more than 2 destination
addresses. If an edge was already stored in the described data structure, no further
action was taken. If an edge was reported for the first time, it was written to a log
file. This implementation seemed to have no considerable negative impact on the
performance because every edge was only written to a file once. The separate log file
can later be used to evaluate the reached code blocks.

5.3 Input Seeds

AFL needs at least one valid input for the target program. This input is used as a
seed from which the test cases are derived. The test cases are then passed to the
target application.

To test our fuzzing integration, we first used a simple seed that consisted of the
alphabet in lower and upper case. Although the fuzzing integration was working as
intended, the MOSManager_RedirectMessage function was not executed, even after
several hours of runtime. Because the fuzzing input was not a valid telecommand,
multiple checks in TCMA_VerifyCommand failed. Hence, the TCMA_ExecuteCommand
function never executed a command, as the status bytes of the telecommand had
the wrong values. Because of the checks that are performed by the firmware, AFL
needs to calculate specific values for multiple bytes in the telecommand, to trigger
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the execution of a command. These bytes are at least the two status integers, the
primary headers upper two bytes, the service, the service area, the operation and the
priority byte. In total, AFL would need to find 10 bytes that need be have specific
values at the same time. With 280 possible combinations, this is likely not going to
happen for a long time.

To improve the fuzzing inputs, we used the insights that were gained from the re-
verse engineering of TCMA_VerifyCommand. As a result, we came up with 18 in-
put seeds. In each seed, the status bytes were set to the value that is expected in
TCMA_VerifyCommand. Also, the primary header and the priority byte were set to the
expected values. Additionally, we added correct values for the service area, service,
operation and service area version fields that are evaluated in MOSManager_Redirect
Message. These values were different for every input seed, so that AFL has a
valid input for different telecommand handlers. With this updated input seeds,
MOSManager_Redirect Message was called and telecommands were passed to the
command handlers.
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In the evaluation chapter, we first analyze the coverage that was obtained during the
fuzzing and we also look at the performance of our implementation. Following that,
we describe a vulnerability that was found by fuzzing the OPS-SAT firmware. We
also explain how we were able to find an exploit for this vulnerability. Additionally,
we test our emulator in a case study, where we verify a vulnerability that was already
known.

6.1 Fuzzing coverage

This section explains how the coverage varies for different fuzzing approaches. First,
we show that fuzzing without suitable input seeds is not efficient. Next, we explain
the results for fuzzing with optimized input seeds. We also selected certain command
handlers in particular for a second fuzzing-run to improve their coverage. The results
of this approach are evaluated in the third subsection. At the end of the section, we
summarize our results.

6.1.1 Initial coverage

To test the AFL integration, we first started AFL with one input seed that con-
sisted of the alphabet in lower and uppercase. While the AFL integration worked
flawlessly, AFL was not able to generate input that passed the checks in the TCVE_
GenericVerification function, even after multiple hours of runtime. Therefore, the
coverage in the relevant parts of the firmware was nonexistent.

6.1.2 Coverage with optimized seeds

As we explained in section 5.1.4 and section 5.3, the firmware checks multiple bytes
in every telecommand to determine if the input is valid. After we used optimized
seeds as input for AFL, QEMU started to execute the telecommand handlers in the
MOSManager_RedirectMessage function after a short amount of time.

In total, AFL found 56377 edges after 7 days of fuzzing. The majority of these edges
were discovered within the first 48 hours. Because the virtual CPU receives an in-
terrupt from the virtual timer every 100 microseconds, the coverage contains many
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edges to and from the interrupt handler that are not part of the regular execution
flow. If these edges are removed from the coverage log, 35852 edges remain. Dur-
ing a timer interrupt, the firmware executes the vTick function. In some cases, a
context switch happens during the execution of vTick and QEMU reports an edge
from vTick to a regular function. If these edges are also removed, 26325 unique
edges remain in the coverage. The coverage was only recorded between the inser-
tion of the fuzzing input and the end of the TCTA_Cycle. Therefore, edges that
occur before and after the TCTA_Cycle are not considered here, except, when they
are part of a task that became active during the execution of the TCTA_Cycle. In-
side the MOSManager_RedirectMessage function, every telecommand handler was
executed.

Table 6.1: General fuzzing coverage
ID Telecommand Handler Covered blocks Percent
1 INVOKE_GetGPSData 15/18 78%
2 INVOKE_ReadI2CBus 9/9 100%
3 INVOKE_ReadI2CPayload 9/9 100%
4 INVOKE_WriteI2CBus 9/9 100%
5 INVOKE_WriteI2CPayload 9/9 100%
6 PUBSUB_MonitorEvent 6/6 100%
7 REQUEST_AGGR_AddDefinition 53/78 67%
8 REQUEST_AGGR_GetValue 40/58 68%
9 REQUEST_AGGR_ListDefinition 33/47 70%
10 REQUEST_AddDefinition 14/15 93%
11 REQUEST_AddParameterCheck 7/7 100%
12 REQUEST_CheckMemory 9/9 100%
13 REQUEST_GetCurrentTime 5/6 83%
14 REQUEST_GetTimeMode 7/7 100%
15 REQUEST_ListDefinition 46/60 76%
16 REQUEST_ListOperation 8/20 40%
17 REQUEST_PerformHealthCheck 19/22 86%
18 REQUEST_TestFile 25/55 45%
19 REQUEST_WriteFile 61/133 45%
20 SEND_Alive 3/3 100%
21 SEND_GoToMode 12/12 100%
22 SUBMIT_AGGR_EnableGeneration 32/34 94%
23 SUBMIT_AGGR_RemoveDefinition 27/33 81%
24 SUBMIT_AGGR_UpdateDefinition 45/62 72%
25 SUBMIT_ALERT_EnableGeneration 66/71 92%
26 SUBMIT_ApplyManualTimeShift 12/13 92%
27 SUBMIT_ClearFromTime 15/16 93%
28 SUBMIT_ClearMemory 4/5 80%
29 SUBMIT_CreateFile 33/40 82%
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Table 6.1: General fuzzing coverage
ID Telecommand Handler Covered blocks Percent
30 SUBMIT_DeletePacketStore 4/5 80%
31 SUBMIT_DownlinkPacketStoreContent 2/2 100%
32 SUBMIT_EnableCheck 84/101 83%
33 SUBMIT_EnableCriticalCommands 11/12 91%
34 SUBMIT_InsertOperation 13/17 76%
35 SUBMIT_LoadMemory 10/11 90%
36 SUBMIT_PatchFile 5/17 29%
37 SUBMIT_PowerOff_SBandRX 6/6 100%
38 SUBMIT_PowerOff_SBandTX 6/6 100%
39 SUBMIT_PowerOn_SBandRX 6/6 100%
40 SUBMIT_PowerOn_SBandTX 6/6 100%
41 SUBMIT_PowerOn_XBandTX 6/6 100%
42 SUBMIT_Powercycle 36/39 92%
43 SUBMIT_RemoveDefinition 79/95 83%
44 SUBMIT_RemoveFile 32/46 69%
45 SUBMIT_RemoveParameterCheck 79/95 83%
46 SUBMIT_ResetADCS 3/4 75%
47 SUBMIT_ResetEPSWatchdog 2/2 100%
48 SUBMIT_ResetOBSW 6/6 100%
49 SUBMIT_SetADCSMode 19/28 67%
50 SUBMIT_SetAccessMask 55/59 93%
51 SUBMIT_SetBootImage 23/25 92%
52 SUBMIT_SetManualTime 12/13 92%
53 SUBMIT_SetNavTransMode 14/16 87%
54 SUBMIT_SetPowerState 11/52 21%
55 SUBMIT_StopPacketStoreDownlink 7/7 100%
56 SUBMIT_SubmitAction 15/22 68%
57 SUBMIT_UpdateDefinition 72/89 80%
58 SUBMIT_UploadOrbitTLE 35/37 94%
59 SUBMIT_UseAutomaticTime 8/8 100%

For 32 of the 59 telecommand handlers, a high coverage above 90% was achieved.
However, 5 handlers were only covered to less than 50%. Three of these handlers,
SUBMIT_PatchFile, REQUEST_TestFile, and REQUEST_WriteFile, are working on
files that are stored on the flash chip. Because the flash chip is not fully emulated,
some conditional operations that depend on the fash chips content fail and some of
the following branches are never taken. Also, some checks of the input data fail,
as specific values that were not found by AFL are expected at certain points. The
other two handlers, REQUEST_ListOperation and SUBMIT_SetPowerState, have low
coverage because parts of the input are checked against specific values that were also
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not found by AFL.

For some of the other command handlers with coverage below 100%, we manually in-
vestigated why certain basic blocks were not executed and if they possibly contain un-
safe operations. In some command handlers, multiple larger basic blocks are missed
in sequence, for example in INVOKE_GetGPSData or SUBMIT_EnableCheck. In both
cases, the handler tried to perform hardware interactions. The INVOKE_GetGPSData
handler tries to read the GPS power status. Because the GPS device is not em-
ulated, the resulting value is null and a conditional branch is not taken. The
SUBMIT_EnableCheck handler tries to read data from the FRAM chip. Because
only a very basic emulation of the chip was implemented and the actual contents are
not known to us, the resulting value is also null and multiple basic blocks are not
executed, including function calls.

Multiple smaller basic blocks were not executed because the fuzzing input data
missed values at specific locations that are needed for conditional branches. How-
ever, these basic blocks only contain one or two instructions, for example, to set a
function call argument in a register.

6.1.3 Targeted coverage

Because some telecommand handlers with a high number of basic blocks had lower
coverage, we decided to redo the fuzzing for them in a more targeted approach, where
only one command handler was executed in each fuzzing run. To do so, we set the
content of the telecommand’s status integers and the space packet’s primary header
to fixed values that would trigger the execution of the telecommand. Additionally,
the values for the service area, service and operation were set in the secondary header,
so that the targeted telecommand handler was called. The fuzzing input was also
injected right before the TCMA_ExecuteCommand function started, as the previous
results showed that only the content of the space packet header was checked in
TCMA_VerifyCommand. This way, the performance could be slightly improved, as
unneeded function calls were prevented.

The fuzzing input was injected into the telecommand array and the maximum
length for the input was set to 0x12a bytes so that only telecommands with a valid
length were created by AFL. We also increased the timer interrupt speed, by set-
ting the sleep duration to 50 microseconds. This resulted in a faster execution,
with 310 to 350 executions per second. As only one telecommand was targeted,
we could use multiple instances of AFL that worked in parallel on the same input
seed.

The first telecommand handler that was fuzzed this way, was the SUBMIT_SetPower
State function. After running 6 AFL instances for 120 minutes, the coverage in-
creased to 35 of 52 blocks, or 67%. The remaining, non-executed parts, are basic
blocks in a for-loop that loops over the status of peripheral devices. Because those
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devices are not part of the emulation, the code inside the loop likely will not be exe-
cuted and the remaining basic blocks will not be covered. It was also noticed that all
fuzzing instances fall to a very low execution seed after less than 60 minutes. This
is possibly caused by hardware interactions that wait for a result with a timeout.
Because most hardware devices are not emulated, especially the power management
system, this may cause waiting times that result in a low execution speed for the
TCTA_Cycle task. However, the specific cause of this behavior needs to be further
investigated.

For the command handler REQUEST_ListOperation the targeted approach resulted
in no new edges after 2 hours of fuzzing by 12 parallel instances with 2.78 million
executions each. Here, a specific value is expected that was not found by the fuzzing
tool. Because other handlers seem to be more promising, we did not continue the
fuzzing of that command handler.

Using targeted fuzzing, the coverage for the REQUEST_ListDefinition command
handler could be increased to 51 of 60 blocks or 85%. The fuzzing was done by
12 parallel instances for 11 hours. Each instance performed 13.8 million executions.
Some of the non-executed basic blocks will only be executed if certain values in the
memory are set. These values are loaded from the connected flash device during
the firmware startup. Because this device is not emulated, the blocks will not be
executed.

For the SUBMIT_SetADCSMode handler, a coverage of 67% percent was reached after
30 minutes with 15 parallel fuzzing instances. This shows that the originally obtained
coverage can be reached in a short time by the fuzzing implementation. However,
the coverage did not increase anymore. After 2 hours and 45 minutes, with about
3 million executions per instance, no new code blocks were executed. Again, a
possible reason is that the command handler calls functions that read data from
non-emulated hardware. Therefore, it is unlikely that the coverage can be improved
without implementing further virtual devices.

Table 6.2: Targeted fuzzing coverage
Telecommand Handler Original Coverage Targeted Coverage
SUBMIT_SetPowerState 21% 67%
REQUEST_ListOperation 40% 40%
REQUEST_ListDefinition 76% 85%
SUBMIT_SetADCSMode 67% 67%

The results of the second fuzzing run show that the coverage of specific code seg-
ments can be improved if a they are targeted by fuzzing in particular. However,
this does not apply to code that depends on non-emulated hardware devices. Code
segments that are only executed if a specific input was found by the fuzzing tool
could still be executed, as it is only a matter of time until the fuzzing tool will
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have generated the needed input. Nevertheless, this might be very time-consuming
and could be achieved in a more efficient way, if further optimized input seeds are
used.

6.1.4 Summary

The fuzzing implementation and the defined input seeds resulted in an average cov-
erage of 85,37% in the telecommand handlers. 39 of the 59 telecommand handlers
were covered to more than 85%, only 20 telecommand handlers were covered to less
than 85%.

In some cases, command handlers depend on data from peripheral devices. In such
cases, some basic blocks may never be executed, because the respective device is not
emulated.

Some basic blocks were not executed because they expect specific values that AFL did
not provide. However, it is possible to improve the coverage of such command han-
dlers by fuzzing them in particular with specific input seeds.

6.2 Performance

The performance of AFL and the emulation highly depends on the timer interrupt
interval. A shorter interval results in a faster execution speed. However, a very short
interval results in a lower execution speed. The reason for this is that a long timer
interval results in fewer timer interrupts. If no task is in the ready state, the firmware
executes the idle task until another task becomes ready. Because this often depends
on the amount of passed time, fewer tasks are executed. If more timer interrupts
occur, waiting times pass faster, as they are measured in ticks and not in real-time.
Hence, a short timer interval results in an overall faster execution. But, if the timer
interval is too short a task will be interrupted just after it became active and only a
short segment of the task’s code will be executed. By experimenting with different
timer intervals, we found out that the TCTA_Cycle has the highest execution speed
if an interval of 50 microseconds is used. In the first fuzzing phase an interval of 100
microseconds was used. For the targeted fuzzing, the 50 microseconds interval was
used.

Most of the 12 AFL instances that were used to obtain the coverage with optimized
seeds performed about 112 million executions within 7 days. The average execution
speed is therefore about 182 executions per second. 3 instances had a significantly
slower performance, with 12, 23 and 53 million executions. One instance performed
about 96 million executions. We were not able to determine the exact reason for the
difference in execution speed. AFL may generate input that under certain conditions
results in a lower execution seed. For example, if the firmware waits for external
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devices to act with a timeout, before executing the TCTA_Cycle again, AFL will
not receive a new execution signal from QEMU. Another possible reason is that the
emulation contains a bug that provokes this behavior. However, we noticed a reduced
execution speed during the fuzzing of the SUBMIT_Set PowerState command handler
and regular execution speeds for the other three command handlers that were selected
for targeted fuzzing. Therefore, it is more likely that certain command handlers may
be the source for this behavior.

We noticed that AFL reports a very low stability value for all instances. Stability
is a measurement that shows if an input results in the same execution path for
multiple runs. For the 12 instances, AFL reported stability values below 1% without
exception. The reason for this is that the timer interrupts stop the regular execution
flow during every interrupt. QEMU then reports a new edge to AFL, from the
current position to the interrupt handler. After the interrupt, QEMU reports a new
edge from the interrupt handler to the previous program position. Because the timer
interrupts do not happen at the same time for every execution, over time every basic
block, outside a protected code segment, will have an edge to and from the interrupt
handler. If the same AFL input is used in multiple executions, QEMU will therefore
report different execution paths for every execution. It is likely that AFL generates
unnecessary test cases that could have an influence on the fuzzing performance.
Hence, the fuzzing performance could be improved if edges to and from the interrupt
handler would no longer be reported to AFL. But, even then the stability will be
below 100% because the firmware sometimes continues the execution at a different
address after an interrupt. For example, if a task with a higher priority becomes
ready after the timing interrupt, a new execution path results. Another reason for
the low stability is that QEMU sometimes optimizes the immediate code and the
start or end of translation blocks.

The performance for general fuzzing could be improved by a more targeted ap-
proach. The first 0x10 bytes of a telecommand are the same for every input and
therefore could be set by the fuzzing integration functions instead of being part
of the fuzzing input data. The same applies to other values that are the same
for every telecommand, like the priority byte or the first two bytes of the primary
header.

6.2.1 Specific Fuzzing Experiment

To determine, if the fuzzing performance could be further improved we experi-
mented with different approaches. One of these approaches was to only execute the
TCTA_Cycle and skip the other parts of the firmware.

For this experiment, we patched the QEMU implementation. When the end of TCTA_
Cycle is reached, the emulation should not continue the execution as planned, but
jump back to the start of the TCTA_Cycle. This way, the TCTA_Cycle would be
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executed in an endless loop, without a long interruption. This should result in an in-
creased execution speed, as less time passes between the test cases.

To test this approach, we used 12 AFL instances that worked on different input seeds.
As expected, the execution speed was drastically increased. Each AFL instance
executed about 3000 test cases per second.

This experiment shows that a specific part of the firmware can be executed much
faster if other parts of the firmware are left out. However, it needs to be considered
that this kind of partial execution may lead to incomplete results. As we show in
the following section, some errors that are caused by the fuzzing input only can be
observed later in the execution. By only executing a specific part of the firmware,
such cases will be missed. Therefore, this approach should only be used if an error
is expected that certainly will become active inside the tested code segment, for
example, a buffer overflow that results in a crash before the end of the tested code
segment is reached.

6.3 Findings

In this section, we describe a vulnerability that was found during the fuzzing. Then,
we explain how we developed an exploit for said vulnerability. We also cover how
the vulnerability can be mitigated. In the last subsection, we evaluate the security
of the telecommand handlers in general.

6.3.1 Memcopy bug

During the fuzzing phase, we noticed that the emulation started to behave strangely
after some time. AFL was not producing any new output and in some instances
the emulation was stuck in one of multiple endless loops. AFL also reported several
crashes that were caused by one of the functions that we defined as crash points.
After investigating these crashes, we found out that they were initiated by an error
handling routine in the xQueueGenericReceive function. This function was exe-
cuted after the TCTA_Cycle completed a full cycle and before the TCTA_Cycle was
started again. Before the error occurs, the function checks if its first parameter, a
pointer to a queue, is null. If so, the execution is stopped by the error handling
routine.

By analyzing the execution path and the coverage, we could determine that the queue
pointer is taken from the data structure TaskInfo that holds information about
the active FreeRTOS tasks. The pointer is loaded in the OTSK_CyclicTaskPattern
function and later passed to xQueueGenericReceive. After analyzing OTSK_Cyclic
TaskPattern, we concluded that this function is used to set metadata for cyclic
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tasks, such as the start and stop tick count or the delay until the task should
start.

OTSK_CyclicTaskPattern also loads a code pointer that points to the start of a tasks
program code from the CyclicTaskInfo data structure. This structure contains
information about cyclic tasks. The code pointer is then called via the ICALL
instruction.

Next, we investigated the register contents during the execution of OTSK_CyclicTask
Pattern. We found out that the queue pointer that is loaded from TaskInfo is null
if the fuzzing input that AFL saved when the crash was reported is written into
the telecommand array. If no fuzzing input is written to the telecommand array,
a valid pointer is loaded and the error handling routine in xQueueGenericReceive
is not called later on. Therefore, the invalid pointer is a result of the fuzzing in-
put.

To find the code segment that changes the content of the queue pointer, we applied a
patch to QEMU that loads the content of the pointer at the start of every basic block
and writes it to a debugging file. That way, we could identify that the pointer is
changed inside the memcpy function. This function copies the content of one memory
area to another. By backtracking the execution path, we found out that the relevant
function call is initiated inside the MALSPP_ConvertSPP2MA function. This function is
used inside the TCTA_Cycle and builds a Message Abstraction Layer (MAL) protocol
message from the space packet of a telecommand [fSDS15]. This process is illustrated
in Figure 6.1.

The first argument of memcpy is the destination address. The relevant call uses a fixed
address in the memory area that stores the MAL message. The second argument
of memcpy is the source address. The source address that is used is the start of the
user data segment in the currently processed telecommand. The third argument of
memcpy is the size, more specifically the number of bytes that should be copied. This
value is loaded as an unsigned half-word from the end of the user data segment in
the currently processed telecommand.

The copy size value is directly taken from the user data segment and no checks are
performed. Therefore, the user data may contain a size value that is larger than the
size of the destination memory area. By implementing a memory dump in QEMU,
we could confirm this assumption, as a memory area of the size that was set in the
telecommand was overwritten by memcpy. The memory layout around this location
is also shown in Table 6.3.

Because the memory area of the message object is not part of the stack of any
task and the memory area is intended to be written on, no security mechanisms in
FreeRTOS or the CPU can detect that values outside the MAL object are overwrit-
ten.
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Figure 6.1: Function calls and data flow in OTSK_CyclicTaskPattern
To provide a better overview, the diagram is simplified and leaves out certain

aspects, like function calls that are not necessary to understand the general concept.
A detailed description is given in the text of section 6.3.1. The blue boxes represent

functions, the green box a memory area. The execution path does not show
function returns. The table shows the memory layout and content from Table 6.3.
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The TaskInfo structure and the CyclicTaskInfo structure are inside the memory
region that was overwritten, alongside other task-related information. Because the
fuzzing input size was smaller than the size value in the user data segment, said area
was overwritten with zeros for the most part. The queue pointer inside the TaskInfo
structure was also overwritten with zeros because of this. Without valid task meta-
data, it is likely that the firmware continues to run with undefined behavior. This ex-
plains unexpected the behavior that we observed earlier.

Table 6.3: Memory layout of the memcpoy destination.
Address Content Size
0xd0102714 MAL message start 0x3d8 Bytes
0xd0102a0c Memcopy destination 0xe0 Bytes
0xd0102aec Metadata information 0x44 Bytes
0xd0102b30 TaskInfo structure 0x594 Bytes
0xd01030c4 Metadata information 0x4 Bytes
0xd01030c8 CyclicTaskInfo structure 0xa0 Bytes

6.3.2 Exploit prototype

With the possibility to overwrite a code pointer in the CyclicTaskInfo structure,
the memcopy bug was an interesting candidate for further research. If the pointer
can be overwritten with meaningful values, the execution of the firmware can be
controlled. This part of the thesis explains how we developed an exploit prototype
that uses a buffer overflow to overwrite said code pointer. The exploit allows us
to take over the execution of the firmware in a laboratory setting. However, we
were not able to prove that this exploit would work under real-world conditions, as
the necessary hardware emulation was not implemented in our emulator. Further
research needs to be done to investigate if the vulnerability can be exploited in
practice.

We first analyzed a regular execution without fuzzing input to determine which cyclic
task is executed after the TCTA_Cycle ends. This is again the TCTA_Cycle. As ex-
plained earlier, the code pointer for a task is loaded from the CyclicTaskInfo struc-
ture and then called with the ICALL instruction inside the OTSK_CyclicTaskPattern
function.

Because one of the fuzzing inputs that triggered a crash overwrote the CyclicTask
Info structure, we assume that it is possible to overwrite the code pointer with a
value of our choice. To do so, we need to inject a payload that contains meaningful
values for the task metadata structures into the telecommand array. Only the code
pointer needs to be modified. Because a single telecommand is not long enough for
such a payload, we need to overwrite multiple telecommands. The firmware does not
verify if a telecommand is too long, therefore this would not trigger any error during
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the execution of the exploit. For this proof of concept, we also assume that any checks
during the telecommand’s construction are passed.

To build a payload that can overwrite the code pointer, we first use padding bytes
to fill the memory area of the MAL message. Then, we append data from a memory
dump that contains legitimate values of the metadata information that is stored
after the MAL message’s memory area. We only apply two changes to this data.
First, we set the size value that is used by memcpy to the length of the payload.
Second, we change the value of the code pointer to an invalid address. This should
result in an illegal instruction exception in QEMU that indicates that the modified
code pointer was loaded into the program counter. The payload was injected by
implementing a loading function that loads input data from a file and then writes it
to the telecommand array.

After executing the emulator with the above modifications and with the payload as
input, the execution path logging showed that the TCTA_Cycle was left in a regu-
lar manner and no exception occurred in the following functions. During the next
execution of the OTSK_CyclicTaskPattern function, the modified code pointer was
loaded and called by the ICALL instruction. As a result, the emulation continued
at the address that we defined in the payload. Because QEMU can not find any
valid instruction at this address, it exited with an illegal instruction error, as was
expected.

6.3.3 Exploit evaluation and mitigation

The constructed exploit was successfully used to change the execution path of the
firmware. However, the exploit was directly written into the telecommand array.
Therefore, we skipped any checks that would be done during the construction of the
telecommand. When a telecommand is loaded into the telecommand array, one of
the used functions verifies that the telecommand is not longer than 0xff bytes. Hence,
our exploit would not be loaded, as it is significantly longer. However, the OPS-SAT
firmware also tries to load a telecommand from the CAN interface if no command
could be loaded from the I2C interface. In this case, no size check is performed
during the TCTA_Cycle.

As can be seen in Figure 2.1, the SEPP is connected to the NanoMind board via a
CAN line. Hence, it could be possible to send a manipulated space packet to the
onboard computer from the SEPP. Because we did not focus on the peripheral hard-
ware and did not emulate the CAN interface in a way that supports data transmis-
sion, this assumption needs to be verified in the future.

The memcpy bug led to multiple problems during the initial fuzzing approach. To
circumvent further issues, we decided to patch the bug. To do so, we implemented a
sidepatch in the implementation of the MCALL instruction in QEMU.
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1 if(ctx->base.pc_next == 0xd00842b2){
2 TCGLabel* no_action = gen_new_label();
3 tcg_gen_brcondi_i32(TCG_COND_LT, cpu_r[11], 0xe0, no_action);
4 tcg_gen_movi_i32(cpu_r[11], 0xe0);
5 gen_set_label(no_action);
6 }

Listing 6.1: Sidepatch for the memcpy bug.

In the first line, we check if the current instruction is at address 0xd00842b2, where
the relevant call sequence of the bug starts. If this is the case, we define a new
TCGLable. In line 3, we check if the size argument in register 11 is 0xe0 or lower.
If this is the case, the memcpy-operation would not overwrite any data outside the
MAL message object. Therefore, we perform a branch to the no_action label that is
set in line 5. If the value in register 11 is greater than 0xe0, QEMU will execute the
code that is generated by line 4. The frontend-operator that is used there overwrites
the size argument with the value 0xe0, so that no values outside the MAL message
object are overwritten.

After this patch was applied to QEMU, the fuzzing performed with much fewer issues.
The number of hangs, endless loops, and unexpected behavior went down and was
only observed in AFL instances with specific seeds. That way, the fuzzing tool could
search for further crashes without interruption.

6.3.4 Telecommand handler security evaluation

After finding the bug described above, we statically analyzed how the telecommand
handlers access the memory. We noticed that the handlers use special functions to
access the MAL message object. For each data type a separate function is used,
for example, there are functions to read integer values or functions to write boolean
values. These functions perform size checks for their corresponding data type before
doing the actual memory operation. This implementation prevents buffer overflows,
like the one we identified.

After implementing the bug mitigation that we explained in the previous subsection,
no new crashes were observed by the fuzzing tool. We only noticed a low fuzzing speed
for certain telecommand handlers, but we assume that this is caused by timed oper-
ations or hardware dependencies that are not emulated.

6.4 Case Study - String Buffer
Overflow

As mentioned in section 2.1.1, the OPS-SAT contains at least one more vulnerability.
Therefore, we decided to investigate if this vulnerability can be found by the fuzzing
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implementation and if it can be verified by using the emulator. By doing so, we
were able to verify the existence of not one but two bugs that can cause of buffer
overflows. We were able to develop an exploit for one of the buffer overflows that
was successfully tested with the emulator. The exploit allows us to take control of
the firmware.

6.4.1 Vulnerability Verification

The vulnerability in question is a stack overflow in the task_adcs_server function.
This function opens a socket for the CubeSat Space Protocol and reads a packet from
an incoming connection [Chr]. Depending on the content of the packet, different
actions are performed. In one case, a buffer of 0x24 bytes in length is created on the
stack. We will refer to this buffer as destination buffer. Next, the strcat function
is used to copy a string from the packet into the destination buffer. However, the
firmware fails to do a size check before calling strcat. Hence, it is possible to overflow
the buffer with a string that is longer than 0x24 bytes.

To verify the assumption that the destination buffer can be overflown, we injected
a 0x30 byte long string into the packet. We also set other bytes in the packet,
so that the execution would continue at the vulnerable code location. After em-
ulating the firmware with this modification, the emulator crashed with an ille-
gal instruction error at a memory address that is not inside the firmware’s code
section. This indicates that a code pointer was overwritten with an invalid ad-
dress.

By exporting the memory region around the destination buffer, we could determine
that the stack overflow was successful, as the memory area above the destination
buffer was overwritten with the padding value. After further investigating the stack
layout, we noticed that the return address of task_adcs_server is directly above the
destination buffer and hence was overwritten by the buffer overflow. However, the
task is a cyclic task and has no return statement. FreeRTOS sets a dummy return
address for such tasks. Therefore, the bug in question can be used to overwrite values
on the stack, but it is not the reason for the observed crash, as the return address is
never used.

After further investigating the execution path, we found out that the last func-
tion that was executed before the crash is GS_ADCS_Log_Start. This function is
called after strcat returns. The function initiates a sequence of other function
calls, including multiple calls of memmove. The memmove function moves the con-
tent of one memory area to another area. These operations are illustrated in Fig-
ure 6.2.

The first memmove operation copies the input string from the destination buffer into
a new buffer that is created just below the return address of GS_ADCS_Log_Start on
the stack. Then, additional data is appended to the string in the new buffer. The



6.4 Case Study - String Buffer Overflow 67

Figure 6.2: Function calls and data flow in task_adcs_server
The blue boxes represent functions, the green boxes memory areas. The table

shows the stack layout. To provide a better overview, the diagram is simplified and
leaves out certain aspects.
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relevant memory layout is also shown in Table 6.4. Depending on the length of the
input string, the new buffer is overflown and one of the memmove operations overwrites
the return address of GS_ADCS_Log_Start. If the input string is longer than 0x23
bytes, the return address is overwritten by fixed values from a format string. If the
input string is longer than 0x3c bytes, the return address is overwritten with values
from the input string.

Table 6.4: Memory layout in GS_ADCS_Log_Start
Address Description Size in bytes
0xd1445654 Start of task_adcs_server stack frame -
0xd1445630 task_adcs_server return address 0x4
0xd144560c Destination buffer for strcat 0x24
0xd1443f54 GS_ADCS_Log_Start return address 0x4
0xd1443f18 Destination buffer for memmove operations 0x3c

To test the above assumption, we injected a string into the CubeSat packet that
consisted of 0x3c padding bytes followed by an address that was randomly chosen.
The test resulted in a jump to said address, after GS_ADCS_Log_Start executed its
return instruction. Hence, it is verified that the OPS-SAT firmware contains another
vulnerability that can be exploited. It needs to be considered that we wrote the input
data directly into the space packet buffer. Therefore, any functions that interact with
the hardware were not part of the test and it needs to be investigated if the exploit
would work in a real-world setting.

As mentions in section 2.2, FreeRTOS provides two mechanisms that can detect
a stack overflow. However, the vulnerability only affects values inside the stack-
frame of the task if no extensively large input string is used. Therefore, the security
mechanisms of FreeRTOS cannot detect that a buffer was overflown. Hence, the
implementer of a task needs to ensure that buffer sizes are checked before data is
copied to the buffer.

6.4.2 Fuzzing Test

To evaluate if the fuzzing integration can identify the memmove vulnerability, we
modified the fuzzing integration to inject the fuzzing input into the CubeSat space
protocol packet. We reported the execution end to AFL just before the task fin-
ished one execution cycle and is executed again. The defined crash points were not
changed.

The fuzzing integration worked as expected, but the execution speed that was re-
ported by AFL was dreadful. AFL reported about one execution every 2 to 3 sec-
onds. The reason for this is that firstly, the task uses functions with timeouts, like
cps_read, which reads in the CubeSat packet. And secondly, the task maybe has a
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lower priority than the TCTA_Cycle and therefore is executed less often. To circum-
vent this issues, we used an optimized input seed. As AFL just needs to generate
any test case that is at least 0x23 bytes long, a crash was found after a few execu-
tions. This result shows that the vulnerability at hand would also be found by using
fuzzing.

In a real-world setting we would not have been aware that a vulnerability is present
in task_adcs_server or how to trigger it. To meaningful perform fuzzing under
this assumption, a modification of the firmware would be necessary. The priority of
the task must be increased and operations with timeouts would need to be patched
to remove the waiting time. This does not only apply to this function, but to all
functions that use timeouts or have a low priority.

6.5 Testing framework evaluation

The test cases can be build and executed automatically by the avr32test.py script.
The framework was used to define 470 test cases. For most instructions, multiple
test cases were needed. This is, because we tried to test every edge case for every
instruction. For example, for the ADD instruction, not only the results of additions
with different numbers, like positive and negative numbers, were tested, but also the
corresponding contents of the status register.

Approximately 35% of the instructions that were implemented before we started to
use the testing framework contained errors that were found with the testing frame-
work. The found errors were all implementation errors that resulted in a faulty
application logic in the emulator. After we started using the testing framework,
such errors were noticed during the implementation of new instructions. Hence, they
did not stay unnoticed for long periods and did not influence the emulation. Some
notable finds are:

• In the ASR instruction that performs an arithmetic shift to the right, the
negative-flag of the status register was not set correctly. The ASR operation
moves bit 31 of the result to the negative-flag bit, however, the result value
was shifted 32 bit to the right, instead of 31.

• In the reverse subtraction instruction, the carry-flag of the status register was
set, instead of the negative-flag.

• In the ANDL instruction, the upper half-word was not cleared, when the clear-
flag was set.

• In the store byte instruction, the pointer address was not increased after the
store operation was done.
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All of the errors were not noticeable during the emulation of the OPSSAT firmware,
as the emulation in general was running with expected behavior. The only reason
to question the correct implementation of the emulation appeared when a branch
instruction did not behave in the way it was expected and the emulation ended in a
endless loop or crashed.

Building and executing all test cases takes about 15 seconds, therefore the framework
seems to have a reasonable performance.

In conclusion, it is advised to use a test-driven approach, when a new architec-
ture is added to QEMU. This seems even more useful when the implementation
is done by a small number of people, without the resources for a quality testing
team.
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In this section, we discuss the results of our research. We first look at the fuzzing of
satellite firmware in general. Next, we discuss the security of the OPS-SAT, followed
by a discussion of the hurdle and issues that we came across during our work. Finally,
we name 3 lessons that we would like to have known before we started work to on
this thesis.

7.1 Satellite firmware fuzzing

By using our AVR32 emulator, we were able to perform fuzzing on the OPS-SAT
firmware and identify a vulnerability. Additionally, we verified a second vulnerability
and showed that it can also be found with fuzzing tools. However, in the second case a
modification of the firmware is necessary, because the fuzzing speed would be to slow
to identify an unknown vulnerability in a reasonable time.

This results show that fuzzing can be used effectively to evaluate the security of
satellite firmware, although some limitations need to be considered. We will further
discuss this hurdles in section 7.3.2.

In general, the implementation of the emulator and the fuzzing connection was
the most time consuming task during this thesis. The actual fuzzing needed sig-
nificantly less time than the implementation and worked as we expected, besides
some issues that are discussed later. The fuzzing of satellite firmware is comparable
to the fuzzing of other embedded devices, as similar aspects need to be consid-
ered.

7.2 OPS-SAT firmware security

The firmware of the OPS-SAT contains at least two vulnerabilities that were con-
firmed in this thesis. Both vulnerabilities are the result of insecure memory opera-
tions, or more precisely missing input data validation. We showed that the vulner-
abilities can be used to change the execution path of the firmware under laboratory
conditions. Therefore, the OPS-SAT may be vulnerable to attacks with manipulated
input, although it remains questionable how much afford is needed to exploit this
in practice, as sending signals to a satellite is not a trivial task. Also, we did not
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determine how the receiver hardware on the satellite reacts to manipulated data, as
we only focused on the firmware. Additionally, the firmware has another buffer that
can be overflown. However, it is not possible to exploit this bug as no code pointer
can be overwritten.

Missing input validation is one of the most common types of security vulnerabilities
[MIT]. Buffer overflows are also a well-known and widespread security issue [LC03].
Modern operating systems provide various security features that defend applications
against this type of vulnerability, for example, by using stack canaries. It was shown
years ago that such defense mechanisms can also be applied to embedded systems
[PW08]. However, newer research shows that buffer overflows are still one of the
most relevant security issues in embedded systems [TM18]. Our results show that
this is also true for CubeSats, which can be seen as a spacial kind of embedded
device.

Firmware can be secure, even without advanced memory protection mechanisms if
it is programmed correctly. In the case of the bugs in the OPS-SAT, a simple if-
statement that checks the input length against the buffer size would be enough to
prevent a buffer overflow. Nevertheless, the firmware developers failed to implement
such a check for the three buffers that can be overflown. A possible reason for this is
that software developers often don’t focus on security when they implement software
[BFCB21]. Past research also discovered that software developers often expect other
parties to ensure the security of a software project as a whole and therefore do not
consider security issues during their work [XLC11]. Further, developers will not
perform additional steps to make a product secure if there is no regulatory need for
it, as their primary objective is that the software works as intended from a functional
point of view [XLC11]. Combined with the missing regulations on the security of
space systems and the assumption that safety concerns are seen as more important
than security, this may explain why the vulnerabilities in the OPS-SAT were not
detected during development [Fal18].

Interestingly, we did not identify any vulnerability in the telecommand handlers
themself. Instead, we noticed that they use special functions to access data in MAL
message objects. These functions perform size checks before the memory operation
and therefore are more resistant against manipulated input. The developers of these
functions seem to be aware of the risks of non-validated input data and hence applied
the necessary validation functions. Because we do not have any insight into the devel-
opment process of the OPS-SAT firmware, we can not determine if these are the same
developers that implemented the vulnerable functions. However, if the same level of
quality and security assurance would be used during the whole development process,
the security of the final product would be improved.

Considering the above aspects, the development of secure CubeSat firmware should
be improved on different layers.
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First, the technical aspects of CubeSat security should be considered more strongly.
For example, modern concepts for memory protection can be used in embedded
systems and therefore could be used in CubeSats. Additionally, technical secu-
rity should get a higher focus during the development phase of a CubeSat. Be-
sides the safety and functionality tests, there could be tests that aim to verify
the security of CubeSat firmware. For example, there are concepts for the detec-
tion of buffer overflows by performing static analysis of the program’s source code
[LE01].

Second, apart from technical aspects, the security of CubeSats could be improved if
certain conceptual aspects in the development process are optimized. One example is
the security awareness of the developers that needs to be enhanced [TTCL18].

Finally, the development of secure CubeSat firmware should be improved by coordi-
nating all security-relevant tasks centrally. The project management should include a
role that is responsible to ensure that security aspects are taken into consideration by
all project members and during any development phase. As was shown for the OPS-
SAT, security aspects were considered in some cases, but not in others. A central co-
ordination of related tasks could reduce the risk that developers expect other project
members to consider the security and vice versa [Fal18].

7.3 Hurdles and Issues

During our work, we encountered various issues and hurdles. Some of them are
related to the QEMU implementation, while others are caused by the characteristics
of the OPS-ST firmware. In this section, we will discuss the 5 most important hurdles
that we came across.

7.3.1 Documentation

The QEMU project is a huge open source project that many people contributed to.
But, even with the wiki on the project website, there is a significant lack of documen-
tation and manuals for new developers. Also, there is not much discussion on public
forums about errors or issues that developers come across. Even frequent errors that
appeared during the implementation were not discussed between developers online.
Searching for issues often did end without any meaningful results. Even the QEMU
project itself states that there is no design overview and that descriptions are often
outdated [QEMc]. To gain an understanding of QEMU, developers are expected to
read the code of QEMU by themself. Although the code is decently commented on
for most parts, going through such a large code base without a general overview is a
time consuming task.
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The lack of documentation was a huge hurdle for us as new QEMU developers. To
understand the inner workings of QEMU, we often needed to look at the imple-
mentations of other architectures. That sometimes led to more hurdles, as different
architectures used different ways to implement the same functionality and not all ap-
proaches were compatible with our existing implementation. We also needed to read
QEMUs source code which sometimes is not easy to understand.

In general, it would be advantageous for the QEMU project to provide documentation
that is more helpful for new developers and that explains how the inner workings are
connected and how a new architecture can be implemented. Therefore, the descrip-
tions in chapter 4 may be beneficial for new developers.

7.3.2 Missing hardware input or output

The OPS-SAT firmware uses many functions that interact with the satellites hard-
ware components. If those components are not emulated, QEMU provides the value
null as a result if the firmware tries to read data from them. Any output send to the
components is ignored and creates no reaction by the emulator.

For the most part, the value null is accepted as a valid result, although it often
indicates that a hardware device is not responding or is not ready. In this case, the
firmware sometimes reports an error via the UART output. As the error was ex-
pected, the emulation continues, even if some code areas will not be executed. Thus,
many functions of the firmware were not covered by the fuzzing.

An issue also occurs if the firmware waits for a certain input. For example, there is
a while loop at address 0xd00c1064 that reads the Cycle Counter register and only
breaks, if a specific cycle count was reached.

Because the cycle counter register is not updated in our implementation, the loop will
never exit and the emulation did not run any further. To circumvent this behavior, we
implemented a workaround that simply skips the branch instruction at this specific
address:

1 if(ctx->base.pc_next == 0xd00c106a) {
2 ctx->base.pc_next += 2;
3 ctx->base.is_jmp = DISAS_CHAIN;
4 return true;
5 }

Listing 7.1: A workaround in the branch instruciton.

The workaround is placed before the actual translation code of the BR instruction.
In line 1, we check if the current program counter address is 0xd00x106a, the address
of the branch instruction at the end of the loop. If this is the case, we tell QEMU
to increase the program counter by 2 in line 2, as the BR instruction is 16 bits
long. In line 3 we tell the TCG that the basic block has ended and that the next
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basic block should be appended without a jump. In line 4, the workaround returns
true to skip the actual code of the instruction and prevent a branch back to the
start of the loop. With this workaround, the emulation will always jump to the
next instruction and the value in the Cycle Counter register is ignored. In total,
there were 4 loops that waited for a certain Cycle Counter value that needed this
workaround. Because a timing device was added to the implementation later, this
workaround could be removed in the future if the Cycle Counter register is updated
by the timer.

Another example of a hardware-caused endless loop is found at address 0xd00c254e.
In this do-while loop, the firmware reads input from the watchdog timer until the
value 2 is received. As there is no watchdog timer implemented, this will be never
the case and the emulation will not leave the loop. Again, the above workaround was
used to skip the BR instruction at address 0xd00c2558.

Figure 7.1: A do-while loop at address 0xd00c254e that reads data from the watch-
dog timer.

An alternative solution would be the implementation of a dummy watchdog timer
device. But, as the workaround is done much quicker and has less potential for
implementation errors, the workaround was preferred.

For some hardware components, a virtual device was added to the emulator. For ex-
ample, we implemented a dummy FL512S Flash device and a UART interface. This
was done to better understand what inputs and outputs the firmware is receiving or
sending. The virtual UART device also provides us with the UART output that could
be used to further understand the program flow of the firmware.

For example, some functions that print data to a log file do not work, because the
file descriptor is not created by the firmware, as the virtual FL512S device does
not contain a file system. If the print functions were called, they checked the file
descriptor and noticed that it was not initiated. The resulting call to an error
handling function lea to a CPU reset. At one point, this prevented the firmware
from finishing the setup functions and starting the tasks. Fortunately, the error
handling functions print out an error message to the UART interface. This way, the
source of the error could be observed in real-time. The error message also contained
the location of the error indicating-function in the source code of FreeRTOS. With
this information, it was easy to identify the MCALL instruction that needs to be
skipped to prevent the faulty code segment.
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7.3.3 Identifying vulnerabilities

When fuzzing an application with AFL, AFL tries to generate input that results
in a crash of the application. If a crash occurs, AFL receives the exit code of the
application and reports that a crash was found. However, this is not the case for
our QEMU implementation, as we emulate the whole operating system. If an error
occurs during the firmware emulation, an exception may be raised inside the emu-
lated firmware. But, this exception does not result in a crash of QEMU that AFL
could recognize. Instead, the emulated firmware performs a CPU reset and restarts.
To circumvent this, we added patches to QEMU that report an exit code to AFL
without stopping the emulation if one of the emulated error-handling functions is
executed.

As we noticed during the investigation of the memcopy-bug, not every error results
in an instant exception inside the firmware. We observed that the firmware was not
running properly, but no crash was reported to AFL and no error-handling routines
were executed inside the firmware. It is possible that the memcopy-bug results
in undefined behavior of the firmware that does not trigger any noticeable crash.
Because of this, classic crashes are not enough to determine if an input triggered a
vulnerability. Instead, the fuzzing needs to be monitored manually for unexpected
behavior, such as very low execution speed or unintended endless loops. But, even
then a bug may stay unnoticed if it does not provoke behavior that can be noticed
with AFLs output.

Another issue is that a vulnerability may provoke an error that only effects the
firmware after some time. If our fuzzing loop would have restarted the emulation
after the TCTA_Cycle was completed, the memcopy-bug would not have been no-
ticed.

With these considerations, we conclude that fuzzing satellite firmware with full sys-
tem emulation may not be able to detect issues that could be detected when fuzzing a
regular application. The chances to detect firmware bugs could be increased if checks
are added to the emulator that try to detect unexpected memory manipulation. This
approach was shown to be effective by other research in the past [MSK+18b]. An
example for such a functionality is to observe memory areas that were used by a
PUSHM instruction. PUSHM writes multiple registers to the stack and is often used
at the very beginning of functions to save the caller register values. Usually, these val-
ues are restored by a POPM instruction at the end of a function just before the func-
tion returns. If the contents of such memory areas are modified at any other point,
this may indicates that a stack buffer overflow occurred.
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7.3.4 Large basic blocks

QEMU can only work on basic blocks up to a certain length. The OPSSAT firmware
has at least one function that exceeds this limit. The CKSM_Init function performs
256 load/store operations that consist of 2 instructions. As there is no branch be-
tween these instructions, the resulting basic block is too long for QEMU and the
emulation ends with an icount_enabled exception that indicated that the maximum
number of instructions was reached.

To circumvent this issue, we injected a patch into the STB (store byte) instruction
that tells QEMU to perform a branch after every store operation in CKSM_Init.
Because not every part of the firmware was executed so far, it is possible that there
is another function where this issue occurs.

While this specific issue was easy to fix, it illustrates that workarounds are needed
for various situations when fuzzing satellite firmware.

7.3.5 Slow fuzzing speed

During the fuzzing phase, we frequently encountered AFL instances with a low per-
formance. In some cases, we were able to determine the reason for the slow speed
or at least identify the responsible code segment. However, in multiple instances
we were not able to do so. Because the impact on our results was not signifi-
cant, we did not further address this issue. Nevertheless, if another area of the
firmware is selected for fuzzing, meaningful fuzzing is probably not possible. For
example, fuzzing of the task_adcs_server function resulted in one execution ev-
ery 2 or 3 seconds. This performance prevents any fuzzing results in a reasonable
time.

To address this issue, multiple approaches can be used. For example, the targeted
code segment could be executed on its own, without a full emulation of the firmware.
Our experiment in section 6.2.1 showed that a high performance can be achieved
this way. However, this approach is only effective if the targeted code segment
contains a bug that results in an instant crash inside the emulated area. Usually, it
is unknown if this is the case beforehand. Hence, it will be more effective to modify
the functions that are responsible for the slow execution speed. These are mainly
function calls with timeouts. Such functions can be skipped by applying side patches
to the emulator or by modifying the firmware image.

7.4 Lessons learned

In the previous section, we explained the different hurdles and issues that we came
across during this work. We also made different smaller experiences that will be
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helpful for future fuzzing-based security assessments of satellite firmware. We will
use this knowledge to name the 3 most important lessons that would have improved
our work if we would have known them beforehand.

1. Test-driven development

One of the most important lessons that we learned during this work is the proper im-
plementation approach when adding a new architecture to QEMU. Because QEMU’s
translation functions add another layer of complexity, implementation errors are
likely to occur, as we explained before. We learned that a test-driven development
approach helps to prevent unnoticed errors and therefore advise other researchers to
use such an approach from the start, when they plan to implement a new architec-
ture into QEMU. The use of the testing framework that was developed for our work
is an example for such a test driven approach.

2. Advanced crash detection

As explained earlier, we noticed unexpected behavior of the firmware during the
fuzzing phase. In some cases, the reason for this was a buffer overflow that overwrote
information that is needed for the firmware to operate. Because FreeRTOS does not
provide security mechanisms that can detect this situation, error handling routines
were only executed if another more serious error occurred as a consequence. A
possible solution for this issue that uses advanced crash detection mechanisms is
discussed in section 7.3.3. Our fuzzing would have been significantly more effective
if such mechanisms were used during our work.

3. Useful hardware emulation

We implemented multiple hardware devices during this thesis and planned to emulate
the full functionality of some of them. However, we noticed that this was a complex
task and in some instances we were missing necessary information. For example, we
do not have an image of the FRAM content. Hence, we only used most of the virtual
devices to observe the input that the firmware sends to them and to respond with a
value that lets the firmware continue it’s execution. When fuzzing satellite firmware,
it will be helpful to have access to all relevant memory images to provide a better
emulation. Otherwise, it is more effective to only implement a basic emulation and
leave out parts that will not be used because of missing images or high complexity.
This way, no time is lost with the implementation of functionality that will not
be useful for the security assessment. It will be more time efficient to modify the
firmware or the emulator to skip code segments that stop the execution until a certain
value is received from peripheral hardware.

On the other hand, the emulation of some hardware interfaces was helpful to un-
derstand the functionality of the firmware. For example, the UART interface that
we implemented allowed us to read logging output from the firmware. That output
helped us multiple times to understand why the firmware we behaving in a certain
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way, for example, when a crash was reported. Hence, we recommend that hard-
ware interfaces that are used to print or store log information should be emulated
early.





8 Related Work

8.1 Related work

Gregory Falco analyzed why the security of space systems is not researched as well as
the security of regular computer systems [Fal18]. He found out that space systems are
often ignored due to multiple reasons when the security of infrastructures is discussed.
These results were part of the motivation for this thesis. A related assessment was
done by Pavur and Martinovic [PM20]. They analyzed various satellite security
incidents and concluded that criminals are likely able to perform command injection
in satellites. These insights were useful, when we decided which parts of the firmware
should be in focus during the fuzzing.

Falco, Viswanathan and Santangelo also did an analysis to develop an Attack Tree
for CubeSats, in which they determined different approaches to attack CubeSats
[FVS21]. This attack tree provides a detailed overview of potential attack vectors
and demonstrates the broad range of possible malicious activities that motivated us
to do this thesis. Willis et. al. evaluated what attackers could do with a satellite,
once they gained access to it [WMMG17]. For example, the readings of positioning
sensors could be spoofed to force the satellite to perform unwanted course corrections.
The considerations from this research could be tested with the emulator and the
vulnerabilities that we discovered.

Muench et. al. researched the fuzzing of embedded devices [MSK+18b]. One impor-
tant aspect of their research is that embedded systems may not produce noticeable
errors if a vulnerability was triggered by fuzzing. This was an issue that we also
came across during our research. We were able to identify fuzzing indicated error
without advanced detection techniques, however our fuzzing implementation could
be improved, if such techniques are applied.





9 Conclusion

In the conclusion, we summarize the results of this thesis. We first describe our work
and explain how we achieved our research goals. Then we discuss further research
questions that can be based on our work.

9.1 Summary

The goal of this thesis was to provide the following three contributions:

• Implementation of an AVR32 emulator

• Fuzzing-based security assessment of the OPS-SAT firmware

• Collection of hurdles and issues, that come up when fuzzing satellite firmware

We were able to achieve all three of these goals.

The first part of our work was the implementation of an AVR32 emulator that is
based on the QEMU project. The emulator allows us to execute the OPS-SAT
firmware, which is using the AVR32 architecture, on a CPU of another architecture.
This process is called rehosting and increases the execution speed of the firmware,
as CPUs in desktop computers are significantly more powerful than the CPU of
the OPS-SAT. Rehosting will therefore improve the performance of the fuzzing pro-
cess.

To add a new architecture to QEMU, we needed to develop translation functions
that reproduce the operation of each relevant AVR32 instruction. The translation
functions create an Intermediate Representation (IR) of each instruction. The IR
contains code that performs operations on emulated variables, like the emulated CPU
registers, and the emulated memory. The IR is later translated into instructions of
the host architecture by QEMU.

QEMU needs to be able to determine which instruction should be executed when a
sequence of bytes is loaded from the firmware image. Hence, we needed to define
patterns that represent the different instructions of the AVR32 architecture. Patterns
consist of fixed bits that identify the instruction and variable bits that represent fields.
Fields contain values that are variable, for example, the number of a register that is
used by an operation. The fields are set during the compilation of a program and
are passed to the translation functions.



84 9 Conclusion

The implementation of the translation functions is a process that is prone to errors
because the IR adds another layer of complexity. The values of the virtual variables
are not known during the translation of an instruction, as QEMU first translates a
block of instructions and then executes it. Therefore, values can not be accessed for
debugging and implementation errors are easy to miss. To circumvent this issue, we
developed a testing framework that allows us to verify the emulation of the AVR32
instructions. We defined 470 test cases that test the emulated instructions and
compare the actual results of each instruction with the expected results. By using
this framework, we identified and corrected various implementation errors that were
not detected beforehand.

The second part of this thesis was a fuzzing-based security assessment of the OPS-
SAT firmware. The first task at hand was to identify a suitable function that can
be tested in the fuzzing loop. We evaluated different functions and selected one of
them for the assessment. The selected function is responsible to handle telecom-
mands that are used to control the satellite. Next, we implemented a connec-
tion between our emulator and the AFL fuzzing tool. The connection allows the
fuzzing tool to send input data into the emulated memory of the firmware and re-
ceive coverage and status information from QEMU. We also created multiple input
seeds for the fuzzing tool that should trigger the execution of all available telecom-
mands.

We performed multiple fuzzing runs that resulted in the execution of all telecommand
handlers and a total coverage of 85%. The fuzzing tool reported multiple crashes
and we also noticed that the firmware execution behaved in unexpected ways for
some fuzzing instances. We also tested a targeted approach that focuses on a single
command handler and were able to improve the initial coverage for some of the
handlers.

After investigating the crashes and the unexpected behavior, we identified an insecure
memory operation that caused a buffer overflow. The buffer overflow can be used
to overwrite a code pointer in the firmware’s memory. We were able to develop
an exploit that allows us to overwrite this pointer with a value of our choice and
therefore take control of the firmware. However, this exploit was only tested in a
laboratory setting and might not work on the real OPS-SAT. Because we did not
implement a full emulation of peripheral devices, related functions of the firmware
were skipped during the fuzzing and it is possible that the exploit does not work in
a real-world scenario.

We were aware of another vulnerability in the OPS-SAT firmware that was identified
before this thesis. We decided to test if our fuzzing implementation can detect said
vulnerability and therefore modified our fuzzing integration accordingly. That test
was successful, as the fuzzing tool triggered a crash of the firmware. However, the
vulnerability in question was not the cause of the crash. While the vulnerability
causes a stack overflow, which overwrites values on the stack, it does not overwrite
a code pointer. Instead, another insecure memory operation also caused a stack
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overflow. We developed an exploit for this second vulnerability and used our emulator
to test if the exploit can be used to gain control of the firmware. That test was also
successful, as we were able to overwrite a code pointer that was loaded into the
program counter. Again, this exploit was only tested under laboratory conditions
and needs to be verified with full hardware emulation.

We showed that the OPS-SAT contains a least two vulnerabilities that can be ex-
ploited in a laboratory setting. We also showed that fuzzing can be used to identify
vulnerabilities like these in satellite firmware.

The third contribution of this thesis is a collection of hurdles and issues that re-
searchers need to handle when fuzzing satellite firmware. To this end, we summarized
multiple difficulties that we came across during our work.

The first hurdle is the lack of documentation and tutorials for developers that want
to add a new architecture to QEMU. We needed to read the code of other architec-
ture implementations and the QEMU core system, to gain an understanding how to
implement certain aspects of the emulation.

The second hurdle is the dependence on hardware devices. The firmware has many
interactions with peripheral hardware that change how the firmware behaves. As we
did not emulate most hardware interfaces, we implemented various workarounds that
skip parts of the firmware that interact with hardware.

Another issue was the detection of errors that should be counted as crashes in the
fuzzing tool. Because we emulated a full operating system, an error did not result
in an exit code. Instead, the firmware executes it’s internal error handling routines
and resets the virtual CPU. We needed to manually define points in the firmware
that would trigger the report of an error to AFL, if they were executed. However,
in some cases, the found vulnerability did not trigger a reset of the CPU but other
errors that were not automatically detected.

A further hurdle is the low execution speed of certain parts of the firmware. Because
some functions perform timed operations, the fuzzing speed in some code segments
was significantly slower than in other parts.

We learned multiple lessons from this experience. For example, we will use a
test-driven development approach in the future when new instructions are added
to QEMU. We also would use advanced crash detection mechanisms during the
fuzzing. Finally, we would reduce the complexity of hardware emulation by fo-
cusing on workarounds that skip parts of the firmware that depend on hardware
interactions. The only exception are hardware interfaces that are used to print log
information, like UART. Such interfaces should be emulated early on, as they can be
used to better understand the behavior of the firmware.
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9.2 Future work

This thesis showed how fuzzing can be used to test the security of satellite firmware.
Besides the exploited vulnerabilities, we noticed that the firmware starts to behave
unexpectedly if specific input seeds are used for the fuzzing. This behavior should be
further investigated to determine if it is the result of another vulnerability. To inves-
tigate this potential vulnerability in an effective manner, advanced fault detection
techniques, like Heap Object Tracking, should be implemented into the emulator.
Such techniques showed a significantly improvement in the detection of vulnerabili-
ties in embedded systems [MSK+18b].

To further assess the security of the OPS-SAT more hardware devices could be
implemented into the emulator. This way, many functions that depend on hardware-
related values could be tested more effectively. It would be also useful to integrate a
copy of the file system that is stored on the flash memory, because there are functions
that write data to or read data from this memory.

The developed AVR32 extension of QEMU can be optimized to make it capable
to emulate the full AVR32 instruction set. The virtual QEMU CPU could also be
updated to support AVR32b CPUs. The resulting emulator can be used as a base
for other research projects that aim to assess the security of AVR32 based satellite
firmware or AVR32 devices in general. A first version of the QEMU extension with
full support for the AVR32 instruction set will be provided to the QEMU project
after this thesis.

Finally, the results of the above improvements can be used to do further fuzzing-
based security assessments of the OPS-SAT. The other functions that were listed in
section 5.1 could be assessed for vulnerabilities. Our approach could also be used to
evaluate the security of other satellites.
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